These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27241171)

  • 1. Quantitative analysis of modeled ATP hydrolysis in water by a colorimetric sensor array.
    Minami T; Emami F; Nishiyabu R; Kubo Y; Anzenbacher P
    Chem Commun (Camb); 2016 Jun; 52(50):7838-41. PubMed ID: 27241171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric Detection of the Adenylation Activity in Nonribosomal Peptide Synthetases.
    Maruyama C; Niikura H; Takakuwa M; Katano H; Hamano Y
    Methods Mol Biol; 2016; 1401():77-84. PubMed ID: 26831702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of AMP, ADP and ATP through Cooperative Binding by Cu(II) and Zn(II) Complexes Containing Urea and/or Phenylboronic-Acid Moieties.
    Carreira-Barral I; Fernández-Pérez I; Mato-Iglesias M; de Blas A; Platas-Iglesias C; Esteban-Gómez D
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29470445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assay of enzymes forming AMP+PPi by the pyrophosphate determination based on the formation of 18-molybdopyrophosphate.
    Katano H; Tanaka R; Maruyama C; Hamano Y
    Anal Biochem; 2012 Feb; 421(1):308-12. PubMed ID: 22079136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrophosphate Recognition and Sensing in Water Using Bis[zinc(II)dipicolylamino]-Functionalized Peptides.
    Jolliffe KA
    Acc Chem Res; 2017 Sep; 50(9):2254-2263. PubMed ID: 28805368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly selective colorimetric sensing pyrophosphate in water by a NBD-phenoxo-bridged dinuclear Zn(II) complex.
    Yang S; Feng G; Williams NH
    Org Biomol Chem; 2012 Aug; 10(29):5606-12. PubMed ID: 22733118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyrophosphate-induced reorganization of a reporter-receptor assembly via boronate esterification; a new strategy for the turn-on fluorescent detection of multi-phosphates in aqueous solution.
    Nonaka A; Horie S; James TD; Kubo Y
    Org Biomol Chem; 2008 Oct; 6(19):3621-5. PubMed ID: 19082166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exponential ATP amplification through simultaneous regeneration from AMP and pyrophosphate for luminescence detection of bacteria.
    Lee HJ; Ho MR; Tseng CS; Hsu CY; Huang MS; Peng HL; Chang HY
    Anal Biochem; 2011 Nov; 418(1):19-23. PubMed ID: 21810404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Fluorescence Sensor Array Based on Zinc(II)-Carboxyamidoquinolines: Toward Quantitative Detection of ATP*.
    Pushina M; Farshbaf S; Mochida W; Kanakubo M; Nishiyabu R; Kubo Y; Anzenbacher P
    Chemistry; 2021 Aug; 27(44):11344-11351. PubMed ID: 34129701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic pyrophosphate generation from adenosine triphosphate by cell-free human synovial fluid.
    Park W; Masuda I; Cardenal-Escarcena A; Palmer DL; McCarty DJ
    J Rheumatol; 1996 Apr; 23(4):665-71. PubMed ID: 8730124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a charcoal paper adenosine triphosphate:pyrophosphate exchange assay: kinetic characterization of NEDD8 activating enzyme.
    Bruzzese FJ; Tsu CA; Ma J; Loke HK; Wu D; Li Z; Tayber O; Dick LR
    Anal Biochem; 2009 Nov; 394(1):24-9. PubMed ID: 19602421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zn(II) based colorimetric sensor for ATP and its use as a viable staining agent in pure aqueous media of pH 7.2.
    Mahato P; Ghosh A; Mishra SK; Shrivastav A; Mishra S; Das A
    Chem Commun (Camb); 2010 Dec; 46(48):9134-6. PubMed ID: 21049131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric sensor for ATP in aqueous solution.
    Jose DA; Mishra S; Ghosh A; Shrivastav A; Mishra SK; Das A
    Org Lett; 2007 May; 9(10):1979-82. PubMed ID: 17429979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescent pyrophosphate sensor with high selectivity over ATP in water.
    Lee DH; Kim SY; Hong JI
    Angew Chem Int Ed Engl; 2004 Sep; 43(36):4777-80. PubMed ID: 15366084
    [No Abstract]   [Full Text] [Related]  

  • 15. Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity.
    Wang C; Gao J; Cao Y; Tan H
    Anal Chim Acta; 2018 Apr; 1004():74-81. PubMed ID: 29329711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polydiacetylene-based colorimetric self-assembled vesicular receptors for biological phosphate ion recognition.
    Jose DA; Stadlbauer S; König B
    Chemistry; 2009 Jul; 15(30):7404-12. PubMed ID: 19551781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-free colorimetric detection of pyrophosphate ions by the peroxidase-like activity of ATP.
    Wen J; Huang N; Wei Z; Yi D; Long Y; Zheng H
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 267(Pt 2):120479. PubMed ID: 34655979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed Mechanism of Phosphoanhydride Bond Hydrolysis Promoted by a Binuclear Zr(IV)-Substituted Keggin Polyoxometalate Elucidated by a Combination of (31)P, (31)P DOSY, and (31)P EXSY NMR Spectroscopy.
    Luong TK; Shestakova P; Absillis G; Parac-Vogt TN
    Inorg Chem; 2016 May; 55(10):4864-73. PubMed ID: 27111398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A sensor array based on DNA-wrapped bimetallic zeolitic imidazolate frameworks for detection of ATP hydrolysis products.
    Wang Z; Zhou X; Huang Z; Han J; Xie G; Liu J
    Nanoscale; 2021 Dec; 14(1):26-34. PubMed ID: 34897352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly selective fluorescent probe for pyrophosphate in aqueous solution.
    Sun Y; Zhong C; Gong R; Fu E
    Org Biomol Chem; 2008 Sep; 6(17):3044-7. PubMed ID: 18698460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.