These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27241180)

  • 21. Production of Low-Freezing-Point Highly Branched Alkanes through Michael Addition.
    Jing Y; Xia Q; Liu X; Wang Y
    ChemSusChem; 2017 Dec; 10(24):4817-4823. PubMed ID: 29098803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Catalytic Upgrading of 5-Hydroxymethylfurfural to Drop-in Biofuels by Solid Base and Bifunctional Metal-Acid Catalysts.
    Bohre A; Saha B; Abu-Omar MM
    ChemSusChem; 2015 Dec; 8(23):4022-9. PubMed ID: 26549016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass.
    Bi P; Wang J; Zhang Y; Jiang P; Wu X; Liu J; Xue H; Wang T; Li Q
    Bioresour Technol; 2015 May; 183():10-7. PubMed ID: 25710678
    [TBL] [Abstract][Full Text] [Related]  

  • 24. From furfural to fuel: synthesis of furoins by organocatalysis and their hydrodeoxygenation by cascade catalysis.
    Wegenhart BL; Yang L; Kwan SC; Harris R; Kenttämaa HI; Abu-Omar MM
    ChemSusChem; 2014 Sep; 7(9):2742-7. PubMed ID: 25088205
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural.
    Zhang L; Xi G; Zhang J; Yu H; Wang X
    Bioresour Technol; 2017 Jan; 224():656-661. PubMed ID: 27913172
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence.
    Sreekumar S; Balakrishnan M; Goulas K; Gunbas G; Gokhale AA; Louie L; Grippo A; Scown CD; Bell AT; Toste FD
    ChemSusChem; 2015 Aug; 8(16):2609-14. PubMed ID: 26216783
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Catalytic valorisation of various paper wastes into levulinic acid, hydroxymethylfurfural, and furfural: Influence of feedstock properties and ferric chloride.
    Dutta S; Zhang Q; Cao Y; Wu C; Moustakas K; Zhang S; Wong KH; Tsang DCW
    Bioresour Technol; 2022 Aug; 357():127376. PubMed ID: 35623603
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated catalytic process to directly convert furfural to levulinate ester with high selectivity.
    Chen B; Li F; Huang Z; Lu T; Yuan Y; Yuan G
    ChemSusChem; 2014 Jan; 7(1):202-9. PubMed ID: 24194497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst.
    Li H; Deng A; Ren J; Liu C; Lu Q; Zhong L; Peng F; Sun R
    Bioresour Technol; 2014 Apr; 158():313-20. PubMed ID: 24632409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals.
    Binder JB; Raines RT
    J Am Chem Soc; 2009 Feb; 131(5):1979-85. PubMed ID: 19159236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of sulfonated lignin-derived ordered mesoporous carbon for catalytic production of furfural from xylose.
    Wang X; Qiu M; Tang Y; Yang J; Shen F; Qi X; Yu Y
    Int J Biol Macromol; 2021 Sep; 187():232-239. PubMed ID: 34314791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave-Assisted γ-Valerolactone Production for Biomass Lignin Extraction: A Cascade Protocol.
    Tabasso S; Grillo G; Carnaroglio D; Calcio Gaudino E; Cravotto G
    Molecules; 2016 Mar; 21(4):413. PubMed ID: 27023511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Synthesis of Furfural from Biomass Using SnCl₄ as Catalyst in Ionic Liquid.
    Nie Y; Hou Q; Li W; Bai C; Bai X; Ju M
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30736429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical-catalytic approaches to the production of furfurals and levulinates from biomass.
    Mascal M; Dutta S
    Top Curr Chem; 2014; 353():41-83. PubMed ID: 24842621
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst.
    Duan H; Dong J; Gu X; Peng YK; Chen W; Issariyakul T; Myers WK; Li MJ; Yi N; Kilpatrick AFR; Wang Y; Zheng X; Ji S; Wang Q; Feng J; Chen D; Li Y; Buffet JC; Liu H; Tsang SCE; O'Hare D
    Nat Commun; 2017 Sep; 8(1):591. PubMed ID: 28928359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation of corncob into furfural by a bifunctional solid acid catalyst.
    Zhang L; Tian L; Sun R; Liu C; Kou Q; Zuo H
    Bioresour Technol; 2019 Mar; 276():60-64. PubMed ID: 30611087
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.
    Rasmussen H; Sørensen HR; Meyer AS
    Carbohydr Res; 2014 Feb; 385():45-57. PubMed ID: 24412507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pd/NbOPO₄ multifunctional catalyst for the direct production of liquid alkanes from aldol adducts of furans.
    Xia QN; Cuan Q; Liu XH; Gong XQ; Lu GZ; Wang YQ
    Angew Chem Int Ed Engl; 2014 Sep; 53(37):9755-60. PubMed ID: 25045056
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Branched Bio-Lubricant Base Oil Production through Aldol Condensation.
    Norton AM; Liu S; Saha B; Vlachos DG
    ChemSusChem; 2019 Nov; 12(21):4780-4785. PubMed ID: 31493309
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.