These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27241440)

  • 1. A microfluidic flow focusing platform to screen the evolution of crude oil-brine interfacial elasticity.
    Morin B; Liu Y; Alvarado V; Oakey J
    Lab Chip; 2016 Aug; 16(16):3074-81. PubMed ID: 27241440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonmonotonic Elasticity of the Crude Oil-Brine Interface in Relation to Improved Oil Recovery.
    Chávez-Miyauchi TE; Firoozabadi A; Fuller GG
    Langmuir; 2016 Mar; 32(9):2192-8. PubMed ID: 26840555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluid-Fluid Interfacial Effects in Multiphase Flow during Carbonated Waterflooding in Sandstone: Application of X-ray Microcomputed Tomography and Molecular Dynamics.
    Chen Y; Sari A; Mu J; Lebedev M; Saeedi A; Niasar VJ; Xie Q
    ACS Appl Mater Interfaces; 2021 Feb; 13(4):5731-5740. PubMed ID: 33494600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalization of micromodels with kaolinite for investigation of low salinity oil-recovery processes.
    Song W; Kovscek AR
    Lab Chip; 2015 Aug; 15(16):3314-25. PubMed ID: 26151880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real rock-microfluidic flow cell: A test bed for real-time in situ analysis of flow, transport, and reaction in a subsurface reactive transport environment.
    Singh R; Sivaguru M; Fried GA; Fouke BW; Sanford RA; Carrera M; Werth CJ
    J Contam Hydrol; 2017 Sep; 204():28-39. PubMed ID: 28802767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brine-Oil Interfacial Tension Modeling: Assessment of Machine Learning Techniques Combined with Molecular Dynamics.
    Kirch A; Celaschi YM; de Almeida JM; Miranda CR
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15837-15843. PubMed ID: 32191023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating low salinity waterflooding via glass micromodels with triangular pore-throat architectures.
    Liu Y; Block E; Squier J; Oakey J
    Fuel (Lond); 2021 Jan; 283():. PubMed ID: 33408422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of snap-off and pore-filling events during two-phase fluid flow in permeable media.
    Singh K; Menke H; Andrew M; Lin Q; Rau C; Blunt MJ; Bijeljic B
    Sci Rep; 2017 Jul; 7(1):5192. PubMed ID: 28701699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Reservoir-on-a-Chip: Fabricating Reservoir Micromodels by in Situ Growing Calcium Carbonate Nanocrystals in Microfluidic Channels.
    Wang W; Chang S; Gizzatov A
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):29380-29386. PubMed ID: 28792207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomistic Molecular Dynamics Simulations of Crude Oil/Brine Displacement in Calcite Mesopores.
    Sedghi M; Piri M; Goual L
    Langmuir; 2016 Apr; 32(14):3375-84. PubMed ID: 27010399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of a dual-porosity and dual-depth micromodel for the study of multiphase flow in complex porous media.
    Yun W; Ross CM; Roman S; Kovscek AR
    Lab Chip; 2017 Apr; 17(8):1462-1474. PubMed ID: 28294224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability.
    Li H; Zhang T
    Soft Matter; 2019 Sep; 15(35):6978-6987. PubMed ID: 31432880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wettability control on multiphase flow in patterned microfluidics.
    Zhao B; MacMinn CW; Juanes R
    Proc Natl Acad Sci U S A; 2016 Sep; 113(37):10251-6. PubMed ID: 27559089
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Microfluidic Method to Study Enhanced Oil Recovery by Low Salinity Water Flooding.
    Saadat M; Tsai PA; Ho TH; Øye G; Dudek M
    ACS Omega; 2020 Jul; 5(28):17521-17530. PubMed ID: 32715237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the 3D molecular and mineralogical heterogeneity in oil reservoir rocks at the pore scale.
    Oliveira GJR; de Oliveira PC; Surmas R; Ferreira LP; Markötter H; Kardjilov N; Manke I; Montoro LA; Isaac A
    Sci Rep; 2019 Jun; 9(1):8263. PubMed ID: 31164712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Model Porous Media: Fabrication and Applications.
    Anbari A; Chien HT; Datta SS; Deng W; Weitz DA; Fan J
    Small; 2018 May; 14(18):e1703575. PubMed ID: 29527809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New type of pore-snap-off and displacement correlations in imbibition.
    Singh K; Bultreys T; Raeini AQ; Shams M; Blunt MJ
    J Colloid Interface Sci; 2022 Mar; 609():384-392. PubMed ID: 34902675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes.
    de Lara LS; Michelon MF; Miranda CR
    J Phys Chem B; 2012 Dec; 116(50):14667-76. PubMed ID: 23163479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oil Recovery Efficiency and Mechanism of Low Salinity-Enhanced Oil Recovery for Light Crude Oil with a Low Acid Number.
    Kakati A; Kumar G; Sangwai JS
    ACS Omega; 2020 Jan; 5(3):1506-1518. PubMed ID: 32010824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials.
    Jahanbakhsh A; Wlodarczyk KL; Hand DP; Maier RRJ; Maroto-Valer MM
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32698501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.