These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 27241574)

  • 1. Pluripotent stem cells: An in vitro model for nanotoxicity assessments.
    Handral HK; Tong HJ; Islam I; Sriram G; Rosa V; Cao T
    J Appl Toxicol; 2016 Oct; 36(10):1250-8. PubMed ID: 27241574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufactured nanomaterials: categorization and approaches to hazard assessment.
    Gebel T; Foth H; Damm G; Freyberger A; Kramer PJ; Lilienblum W; Röhl C; Schupp T; Weiss C; Wollin KM; Hengstler JG
    Arch Toxicol; 2014 Dec; 88(12):2191-211. PubMed ID: 25326817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biophysical responses upon the interaction of nanomaterials with cellular interfaces.
    Wu YL; Putcha N; Ng KW; Leong DT; Lim CT; Loo SC; Chen X
    Acc Chem Res; 2013 Mar; 46(3):782-91. PubMed ID: 23194178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grouping of nanomaterials for risk assessment.
    Bolt HM
    Arch Toxicol; 2014 Dec; 88(12):2077-8. PubMed ID: 25413730
    [No Abstract]   [Full Text] [Related]  

  • 5. Challenges of using pluripotent stem cells for safety assessments of substances.
    Vojnits K; Bremer S
    Toxicology; 2010 Mar; 270(1):10-7. PubMed ID: 20004228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities.
    Schmidt BZ; Lehmann M; Gutbier S; Nembo E; Noel S; Smirnova L; Forsby A; Hescheler J; Avci HX; Hartung T; Leist M; Kobolák J; Dinnyés A
    Arch Toxicol; 2017 Jan; 91(1):1-33. PubMed ID: 27492622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxicity assessment of nanomaterials: methods and challenges.
    Dhawan A; Sharma V
    Anal Bioanal Chem; 2010 Sep; 398(2):589-605. PubMed ID: 20652549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The applicability of chemical alternatives assessment for engineered nanomaterials.
    Hjorth R; Hansen SF; Jacobs M; Tickner J; Ellenbecker M; Baun A
    Integr Environ Assess Manag; 2017 Jan; 13(1):177-187. PubMed ID: 26887668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices.
    Bouwmeester H; Lynch I; Marvin HJ; Dawson KA; Berges M; Braguer D; Byrne HJ; Casey A; Chambers G; Clift MJ; Elia G; Fernandes TF; Fjellsbø LB; Hatto P; Juillerat L; Klein C; Kreyling WG; Nickel C; Riediker M; Stone V
    Nanotoxicology; 2011 Mar; 5(1):1-11. PubMed ID: 21417684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanomaterial health effects--part 1: background and current knowledge.
    Powell MC; Kanarek MS
    WMJ; 2006 Mar; 105(2):16-20. PubMed ID: 16628969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic platforms for advanced risk assessments of nanomaterials.
    Mahto SK; Charwat V; Ertl P; Rothen-Rutishauser B; Rhee SW; Sznitman J
    Nanotoxicology; 2015 May; 9(3):381-95. PubMed ID: 25051329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanomaterial translocation--the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs--a review.
    Kermanizadeh A; Balharry D; Wallin H; Loft S; Møller P
    Crit Rev Toxicol; 2015; 45(10):837-72. PubMed ID: 26140391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human pluripotent stem cells in drug discovery and predictive toxicology.
    Laustriat D; Gide J; Peschanski M
    Biochem Soc Trans; 2010 Aug; 38(4):1051-7. PubMed ID: 20659002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human pluripotent stem cells as tools for neurodegenerative and neurodevelopmental disease modeling and drug discovery.
    Corti S; Faravelli I; Cardano M; Conti L
    Expert Opin Drug Discov; 2015 Jun; 10(6):615-29. PubMed ID: 25891144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials meet zebrafish: Toxicity evaluation and drug delivery applications.
    Jia HR; Zhu YX; Duan QY; Chen Z; Wu FG
    J Control Release; 2019 Oct; 311-312():301-318. PubMed ID: 31446084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Safety of medicinal nanoproducts: new areas of toxicological research].
    Grudziński IP
    Rocz Panstw Zakl Hig; 2011; 62(3):239-46. PubMed ID: 22171512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STB-HO, a novel mica fine particle, inhibits the teratoma-forming ability of human embryonic stem cells after in vivo transplantation.
    Choi SW; Shin TH; Uddin MH; Shin JH; Kang TW; Lee BC; Kim HS; Seo Y; Shams S; Jung YK; Kang KS
    Oncotarget; 2016 Jan; 7(3):2684-95. PubMed ID: 26646796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The status of in vitro toxicity studies in the risk assessment of nanomaterials.
    Park MV; Lankveld DP; van Loveren H; de Jong WH
    Nanomedicine (Lond); 2009 Aug; 4(6):669-85. PubMed ID: 19663595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of stem cells as alternative methods to animal experimentation in predictive toxicology.
    Kim TW; Che JH; Yun JW
    Regul Toxicol Pharmacol; 2019 Jul; 105():15-29. PubMed ID: 30930176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.