These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
75 related articles for article (PubMed ID: 27241580)
21. Viscoelastic properties of phonosurgical biomaterials at phonatory frequencies. Kimura M; Mau T; Chan RW Laryngoscope; 2010 Apr; 120(4):764-8. PubMed ID: 20213661 [TBL] [Abstract][Full Text] [Related]
22. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model. Zhang Z J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298 [TBL] [Abstract][Full Text] [Related]
23. Viscoelastic properties of three vocal-fold injectable biomaterials at low audio frequencies. Klemuk SA; Titze IR Laryngoscope; 2004 Sep; 114(9):1597-603. PubMed ID: 15475789 [TBL] [Abstract][Full Text] [Related]
24. Elasticity of the human false vocal fold. Chan RW; Fu M; Tirunagari N Ann Otol Rhinol Laryngol; 2006 May; 115(5):370-81. PubMed ID: 16739670 [TBL] [Abstract][Full Text] [Related]
25. A biphasic theory for the viscoelastic behaviors of vocal fold lamina propria in stress relaxation. Zhang Y; Czerwonka L; Tao C; Jiang JJ J Acoust Soc Am; 2008 Mar; 123(3):1627-36. PubMed ID: 18345850 [TBL] [Abstract][Full Text] [Related]
26. A methodological study of hemilaryngeal phonation. Jiang JJ; Titze IR Laryngoscope; 1993 Aug; 103(8):872-82. PubMed ID: 8361290 [TBL] [Abstract][Full Text] [Related]
27. Estimation of viscoelastic shear properties of vocal-fold tissues based on time-temperature superposition. Chan RW J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1548-61. PubMed ID: 11572365 [TBL] [Abstract][Full Text] [Related]
28. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis. Kvit AA; Devine EE; Jiang JJ; Vamos AC; Tao C J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469 [TBL] [Abstract][Full Text] [Related]
29. Assessment of canine vocal fold function after injection of a new biomaterial designed to treat phonatory mucosal scarring. Karajanagi SS; Lopez-Guerra G; Park H; Kobler JB; Galindo M; Aanestad J; Mehta DD; Kumai Y; Giordano N; d'Almeida A; Heaton JT; Langer R; Herrera VL; Faquin W; Hillman RE; Zeitels SM Ann Otol Rhinol Laryngol; 2011 Mar; 120(3):175-84. PubMed ID: 21510143 [TBL] [Abstract][Full Text] [Related]
31. Viscoelasticity of hyaluronan and nonhyaluronan based vocal fold injectables: implications for mucosal versus muscle use. Caton T; Thibeault SL; Klemuk S; Smith ME Laryngoscope; 2007 Mar; 117(3):516-21. PubMed ID: 17334315 [TBL] [Abstract][Full Text] [Related]
32. Lubrication mechanism of the larynx during phonation: an experiment in excised canine larynges. Nakagawa H; Fukuda H; Kawaida M; Shiotani A; Kanzaki J Folia Phoniatr Logop; 1998; 50(4):183-94. PubMed ID: 9819480 [TBL] [Abstract][Full Text] [Related]
33. Vibration parameter extraction from endoscopic image series of the vocal folds. Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815 [TBL] [Abstract][Full Text] [Related]
36. Quantifying the Subharmonic Mucosal Wave in Excised Larynges via Digital Kymography. Zhang Y; Huang N; Calawerts W; Li L; Maytag AL; Jiang JJ J Voice; 2017 Jan; 31(1):123.e7-123.e13. PubMed ID: 27105856 [TBL] [Abstract][Full Text] [Related]
37. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models. Alipour F; Jaiswal S; Finnegan E Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238 [TBL] [Abstract][Full Text] [Related]
38. A quantitative study of the medial surface dynamics of an in vivo canine vocal fold during phonation. Doellinger M; Berry DA; Berke GS Laryngoscope; 2005 Sep; 115(9):1646-54. PubMed ID: 16148711 [TBL] [Abstract][Full Text] [Related]