BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27241726)

  • 1. A new application of the phase-field method for understanding the mechanisms of nuclear architecture reorganization.
    Lee SS; Tashiro S; Awazu A; Kobayashi R
    J Math Biol; 2017 Jan; 74(1-2):333-354. PubMed ID: 27241726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverted nuclear architecture and its development during differentiation of mouse rod photoreceptor cells: a new model to study nuclear architecture.
    Solovei I; Joffe B
    Genetika; 2010 Sep; 46(9):1159-63. PubMed ID: 21058510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution.
    Solovei I; Kreysing M; Lanctôt C; Kösem S; Peichl L; Cremer T; Guck J; Joffe B
    Cell; 2009 Apr; 137(2):356-68. PubMed ID: 19379699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Special characteristics of the transcription and splicing machinery in photoreceptor cells of the mammalian retina.
    Derlig K; Giessl A; Brandstätter JH; Enz R; Dahlhaus R
    Cell Tissue Res; 2015 Nov; 362(2):281-94. PubMed ID: 26013685
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterochromatin drives compartmentalization of inverted and conventional nuclei.
    Falk M; Feodorova Y; Naumova N; Imakaev M; Lajoie BR; Leonhardt H; Joffe B; Dekker J; Fudenberg G; Solovei I; Mirny LA
    Nature; 2019 Jun; 570(7761):395-399. PubMed ID: 31168090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of dynamic nuclear deformation on genomic architecture reorganization.
    Seirin-Lee S; Osakada F; Takeda J; Tashiro S; Kobayashi R; Yamamoto T; Ochiai H
    PLoS Comput Biol; 2019 Sep; 15(9):e1007289. PubMed ID: 31509522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Casz1 controls higher-order nuclear organization in rod photoreceptors.
    Mattar P; Stevanovic M; Nad I; Cayouette M
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E7987-E7996. PubMed ID: 30072429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenetics of eu- and heterochromatin in inverted and conventional nuclei from mouse retina.
    Eberhart A; Feodorova Y; Song C; Wanner G; Kiseleva E; Furukawa T; Kimura H; Schotta G; Leonhardt H; Joffe B; Solovei I
    Chromosome Res; 2013 Aug; 21(5):535-54. PubMed ID: 23996328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential localization of γH2AX foci in euchromatin of retina rod cells after DNA damage induction.
    Lafon-Hughes L; Di Tomaso MV; Liddle P; Toledo A; Reyes-Ábalos AL; Folle GA
    Chromosome Res; 2013 Dec; 21(8):789-803. PubMed ID: 24323064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Global chromatin relabeling accompanies spatial inversion of chromatin in rod photoreceptors.
    Smith CL; Lan Y; Jain R; Epstein JA; Poleshko A
    Sci Adv; 2021 Sep; 7(39):eabj3035. PubMed ID: 34559565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleus inside out--through a rod darkly.
    Ragoczy T; Groudine M
    Cell; 2009 Apr; 137(2):205-7. PubMed ID: 19379685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical insight into light scattering by photoreceptor cell nuclei.
    Kreysing M; Boyde L; Guck J; Chalut KJ
    Opt Lett; 2010 Aug; 35(15):2639-41. PubMed ID: 20680084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viewing Nuclear Architecture through the Eyes of Nocturnal Mammals.
    Feodorova Y; Falk M; Mirny LA; Solovei I
    Trends Cell Biol; 2020 Apr; 30(4):276-289. PubMed ID: 31980345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Opted Megasatellite DNA Drives Evolution of Secondary Night Vision in Azara's Owl Monkey.
    Koga A; Tanabe H; Hirai Y; Imai H; Imamura M; Oishi T; Stanyon R; Hirai H
    Genome Biol Evol; 2017 Jul; 9(7):1963-1970. PubMed ID: 28810713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleome Dynamics during Retinal Development.
    Norrie JL; Lupo MS; Xu B; Al Diri I; Valentine M; Putnam D; Griffiths L; Zhang J; Johnson D; Easton J; Shao Y; Honnell V; Frase S; Miller S; Stewart V; Zhou X; Chen X; Dyer MA
    Neuron; 2019 Nov; 104(3):512-528.e11. PubMed ID: 31493975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell Type-Specific Epigenomic Analysis Reveals a Uniquely Closed Chromatin Architecture in Mouse Rod Photoreceptors.
    Hughes AE; Enright JM; Myers CA; Shen SQ; Corbo JC
    Sci Rep; 2017 Mar; 7():43184. PubMed ID: 28256534
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inefficient double-strand break repair in murine rod photoreceptors with inverted heterochromatin organization.
    Frohns A; Frohns F; Naumann SC; Layer PG; Löbrich M
    Curr Biol; 2014 May; 24(10):1080-90. PubMed ID: 24794298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lamin A upregulation reorganizes the genome during rod photoreceptor degeneration.
    Herrera I; Fernandes JAL; Shir-Mohammadi K; Levesque J; Mattar P
    Cell Death Dis; 2023 Oct; 14(10):701. PubMed ID: 37880237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer Modeling Predicts Chromosome Reorganization in Senescence.
    Chiang M; Michieletto D; Brackley CA; Rattanavirotkul N; Mohammed H; Marenduzzo D; Chandra T
    Cell Rep; 2019 Sep; 28(12):3212-3223.e6. PubMed ID: 31533042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromatin phase separation and nuclear shape fluctuations are correlated in a polymer model of the nucleus.
    Attar AG; Paturej J; Banigan EJ; Erbaş A
    Nucleus; 2024 Dec; 15(1):2351957. PubMed ID: 38753956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.