These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 27241728)
1. Graphene-based microfluidics for serial crystallography. Sui S; Wang Y; Kolewe KW; Srajer V; Henning R; Schiffman JD; Dimitrakopoulos C; Perry SL Lab Chip; 2016 Aug; 16(16):3082-96. PubMed ID: 27241728 [TBL] [Abstract][Full Text] [Related]
2. Capture and X-ray diffraction studies of protein microcrystals in a microfluidic trap array. Lyubimov AY; Murray TD; Koehl A; Araci IE; Uervirojnangkoorn M; Zeldin OB; Cohen AE; Soltis SM; Baxter EL; Brewster AS; Sauter NK; Brunger AT; Berger JM Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):928-40. PubMed ID: 25849403 [TBL] [Abstract][Full Text] [Related]
3. A microfluidic device for both on-chip dialysis protein crystallization and in situ X-ray diffraction. Junius N; Jaho S; Sallaz-Damaz Y; Borel F; Salmon JB; Budayova-Spano M Lab Chip; 2020 Jan; 20(2):296-310. PubMed ID: 31804643 [TBL] [Abstract][Full Text] [Related]
4. A user-friendly plug-and-play cyclic olefin copolymer-based microfluidic chip for room-temperature, fixed-target serial crystallography. Liu Z; Gu KK; Shelby ML; Gilbile D; Lyubimov AY; Russi S; Cohen AE; Narayanasamy SR; Botha S; Kupitz C; Sierra RG; Poitevin F; Gilardi A; Lisova S; Coleman MA; Frank M; Kuhl TL Acta Crystallogr D Struct Biol; 2023 Oct; 79(Pt 10):944-952. PubMed ID: 37747292 [TBL] [Abstract][Full Text] [Related]
5. Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography. Gicquel Y; Schubert R; Kapis S; Bourenkov G; Schneider T; Perbandt M; Betzel C; Chapman HN; Heymann M J Vis Exp; 2018 Apr; (134):. PubMed ID: 29757285 [TBL] [Abstract][Full Text] [Related]
6. Crystallization of Proteins on Chip by Microdialysis for In Situ X-ray Diffraction Studies. Jaho S; Junius N; Borel F; Sallaz-Damaz Y; Salmon JB; Budayova-Spano M J Vis Exp; 2021 Apr; (170):. PubMed ID: 33900284 [TBL] [Abstract][Full Text] [Related]
7. A method of cryoprotection for protein crystallography by using a microfluidic chip and its application for in situ X-ray diffraction measurements. Maeki M; Pawate AS; Yamashita K; Kawamoto M; Tokeshi M; Kenis PJ; Miyazaki M Anal Chem; 2015 Apr; 87(8):4194-200. PubMed ID: 25834918 [TBL] [Abstract][Full Text] [Related]
8. Towards time-resolved serial crystallography in a microfluidic device. Pawate AS; Šrajer V; Schieferstein J; Guha S; Henning R; Kosheleva I; Schmidt M; Ren Z; Kenis PJ; Perry SL Acta Crystallogr F Struct Biol Commun; 2015 Jul; 71(Pt 7):823-30. PubMed ID: 26144226 [TBL] [Abstract][Full Text] [Related]
10. A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions. Murray TD; Lyubimov AY; Ogata CM; Vo H; Uervirojnangkoorn M; Brunger AT; Berger JM Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):1987-97. PubMed ID: 26457423 [TBL] [Abstract][Full Text] [Related]
11. Controlling one protein crystal growth by droplet-based microfluidic system. Yamaguchi H; Maeki M; Yamashita K; Nakamura H; Miyazaki M; Maeda H J Biochem; 2013 Apr; 153(4):339-46. PubMed ID: 23316082 [TBL] [Abstract][Full Text] [Related]
12. A novel sample delivery system based on circular motion for Zhao FZ; Sun B; Yu L; Xiao QJ; Wang ZJ; Chen LL; Liang H; Wang QS; He JH; Yin DC Lab Chip; 2020 Oct; 20(21):3888-3898. PubMed ID: 32966481 [TBL] [Abstract][Full Text] [Related]
13. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction. Emamzadah S; Petty TJ; De Almeida V; Nishimura T; Joly J; Ferrer JL; Halazonetis TD Acta Crystallogr D Biol Crystallogr; 2009 Sep; 65(Pt 9):913-20. PubMed ID: 19690369 [TBL] [Abstract][Full Text] [Related]
14. Polymer-based microfluidic device for on-chip counter-diffusive crystallization and Saha S; Özden C; Samkutty A; Russi S; Cohen A; Stratton MM; Perry SL Lab Chip; 2023 Apr; 23(8):2075-2090. PubMed ID: 36942575 [TBL] [Abstract][Full Text] [Related]
15. Microfluidic Approaches for Protein Crystal Structure Analysis. Maeki M; Yamaguchi H; Tokeshi M; Miyazaki M Anal Sci; 2016; 32(1):3-9. PubMed ID: 26753699 [TBL] [Abstract][Full Text] [Related]
16. Solvent minimization induces preferential orientation and crystal clustering in serial micro-crystallography on micro-meshes, in situ plates and on a movable crystal conveyor belt. Soares AS; Mullen JD; Parekh RM; McCarthy GS; Roessler CG; Jackimowicz R; Skinner JM; Orville AM; Allaire M; Sweet RM J Synchrotron Radiat; 2014 Nov; 21(Pt 6):1231-9. PubMed ID: 25343789 [TBL] [Abstract][Full Text] [Related]
17. More rapid evaluation of biomacromolecular crystals for diffraction experiments. Arai S; Chatake T; Suzuki N; Mizuno H; Niimura N Acta Crystallogr D Biol Crystallogr; 2004 Jun; 60(Pt 6):1032-9. PubMed ID: 15159562 [TBL] [Abstract][Full Text] [Related]
18. Crystallization and Structural Determination of an Enzyme:Substrate Complex by Serial Crystallography in a Versatile Microfluidic Chip. de Wijn R; Rollet K; Olieric V; Hennig O; Thome N; Noûs C; Paulus C; Lorber B; Betat H; Mörl M; Sauter C J Vis Exp; 2021 Mar; (169):. PubMed ID: 33818565 [TBL] [Abstract][Full Text] [Related]
19. Crystallography on a chip - without the chip: sheet-on-sheet sandwich. Doak RB; Nass Kovacs G; Gorel A; Foucar L; Barends TRM; Grünbein ML; Hilpert M; Kloos M; Roome CM; Shoeman RL; Stricker M; Tono K; You D; Ueda K; Sherrell DA; Owen RL; Schlichting I Acta Crystallogr D Struct Biol; 2018 Oct; 74(Pt 10):1000-1007. PubMed ID: 30289410 [TBL] [Abstract][Full Text] [Related]