These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 27241728)
21. High resolution imaging as a characterization tool for biological crystals. Stojanoff V; Cappelle B; Epelboin Y; Hartwig J; Moradela AB; Otalora F Ann N Y Acad Sci; 2004 Nov; 1027():48-55. PubMed ID: 15644344 [TBL] [Abstract][Full Text] [Related]
22. Contaminant inclusion into protein crystals analyzed by electrospray mass spectrometry and X-ray crystallography. Hirschler J; Halgand F; Forest E; Fontecilla-Camps JC Protein Sci; 1998 Jan; 7(1):185-92. PubMed ID: 9514273 [TBL] [Abstract][Full Text] [Related]
23. Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction. Heymann M; Opthalage A; Wierman JL; Akella S; Szebenyi DM; Gruner SM; Fraden S IUCrJ; 2014 Sep; 1(Pt 5):349-60. PubMed ID: 25295176 [TBL] [Abstract][Full Text] [Related]
24. In vacuo X-ray data collection from graphene-wrapped protein crystals. Warren AJ; Crawshaw AD; Trincao J; Aller P; Alcock S; Nistea I; Salgado PS; Evans G Acta Crystallogr D Biol Crystallogr; 2015 Oct; 71(Pt 10):2079-88. PubMed ID: 26457431 [TBL] [Abstract][Full Text] [Related]
25. Crystallization via tubing microfluidics permits both in situ and ex situ X-ray diffraction. Gerard CJJ; Ferry G; Vuillard LM; Boutin JA; Chavas LMG; Huet T; Ferte N; Grossier R; Candoni N; Veesler S Acta Crystallogr F Struct Biol Commun; 2017 Oct; 73(Pt 10):574-578. PubMed ID: 28994406 [TBL] [Abstract][Full Text] [Related]
26. Systematic analysis of supersaturation and lysozyme crystal quality. Yoshizaki I; Sato T; Igarashi N; Natsuisaka M; Tanaka N; Komatsu H; Yoda S Acta Crystallogr D Biol Crystallogr; 2001 Nov; 57(Pt 11):1621-9. PubMed ID: 11679727 [TBL] [Abstract][Full Text] [Related]
27. Structural consequences of hen egg-white lysozyme orthorhombic crystal growth in a high magnetic field: validation of X-ray diffraction intensity, conformational energy searching and quantitative analysis of B factors and mosaicity. Saijo S; Yamada Y; Sato T; Tanaka N; Matsui T; Sazaki G; Nakajima K; Matsuura Y Acta Crystallogr D Biol Crystallogr; 2005 Mar; 61(Pt 3):207-17. PubMed ID: 15735330 [TBL] [Abstract][Full Text] [Related]
28. Preparation of protein nanocrystals and their characterization by solid state NMR. Martin RW; Zilm KW J Magn Reson; 2003 Nov; 165(1):162-74. PubMed ID: 14568526 [TBL] [Abstract][Full Text] [Related]
29. The plug-based nanovolume Microcapillary Protein Crystallization System (MPCS). Gerdts CJ; Elliott M; Lovell S; Mixon MB; Napuli AJ; Staker BL; Nollert P; Stewart L Acta Crystallogr D Biol Crystallogr; 2008 Nov; 64(Pt 11):1116-22. PubMed ID: 19020349 [TBL] [Abstract][Full Text] [Related]
30. Bio-inspired self-pumping microfluidic device for cleaning of urea using reduced graphene oxide (rGO) modified polymeric nanohybrid membrane. Gupta U; Kumar N; Lata A; Singh P; Arun RK Int J Biol Macromol; 2023 Jun; 241():124614. PubMed ID: 37119905 [TBL] [Abstract][Full Text] [Related]
31. A Rare Lysozyme Crystal Form Solved Using Highly Redundant Multiple Electron Diffraction Datasets from Micron-Sized Crystals. Xu H; Lebrette H; Yang T; Srinivas V; Hovmöller S; Högbom M; Zou X Structure; 2018 Apr; 26(4):667-675.e3. PubMed ID: 29551291 [TBL] [Abstract][Full Text] [Related]
32. Data collection from crystals grown in microfluidic droplets. Babnigg G; Sherrell D; Kim Y; Johnson JL; Nocek B; Tan K; Axford D; Li H; Bigelow L; Welk L; Endres M; Owen RL; Joachimiak A Acta Crystallogr D Struct Biol; 2022 Aug; 78(Pt 8):997-1009. PubMed ID: 35916224 [TBL] [Abstract][Full Text] [Related]
34. A capillary-based microfluidic device enables primary high-throughput room-temperature crystallographic screening. Sui S; Mulichak A; Kulathila R; McGee J; Filiatreault D; Saha S; Cohen A; Song J; Hung H; Selway J; Kirby C; Shrestha OK; Weihofen W; Fodor M; Xu M; Chopra R; Perry SL J Appl Crystallogr; 2021 Aug; 54(Pt 4):1034-1046. PubMed ID: 34429718 [TBL] [Abstract][Full Text] [Related]
35. Microfluidic triple-gradient generator for efficient screening of chemical space. Li Y; Xuan J; Hu R; Zhang P; Lou X; Yang Y Talanta; 2019 Nov; 204():569-575. PubMed ID: 31357335 [TBL] [Abstract][Full Text] [Related]
36. Paper-thin multilayer microfluidic devices with integrated valves. Kim S; Dorlhiac G; Cotrim Chaves R; Zalavadia M; Streets A Lab Chip; 2021 Apr; 21(7):1287-1298. PubMed ID: 33690757 [TBL] [Abstract][Full Text] [Related]
37. Modeling, simulation, and employing dilution-dialysis microfluidic chip (DDMC) for heightening proteins refolding efficiency. Kashanian F; Masoudi MM; Shamloo A; Habibi-Rezaei M; Moosavi-Movahedi AA Bioprocess Biosyst Eng; 2018 May; 41(5):707-714. PubMed ID: 29470707 [TBL] [Abstract][Full Text] [Related]
38. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Samiei E; Tabrizian M; Hoorfar M Lab Chip; 2016 Jul; 16(13):2376-96. PubMed ID: 27272540 [TBL] [Abstract][Full Text] [Related]
39. A few low-frequency normal modes predominantly contribute to conformational responses of hen egg white lysozyme in the tetragonal crystal to variations of molecular packing controlled by environmental humidity. Takayama Y; Nakasako M Biophys Chem; 2011 Dec; 159(2-3):237-46. PubMed ID: 21802827 [TBL] [Abstract][Full Text] [Related]