These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 27241729)

  • 1. Systems medicine approaches for peptide array-based protein kinase profiling: progress and prospects.
    Peppelenbosch MP; Frijns N; Fuhler G
    Expert Rev Proteomics; 2016 Jun; 13(6):571-8. PubMed ID: 27241729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinome profiling using peptide arrays in eukaryotic cells.
    Parikh K; Peppelenbosch MP; Ritsema T
    Methods Mol Biol; 2009; 527():269-80, x. PubMed ID: 19241020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technological advances for interrogating the human kinome.
    Baharani A; Trost B; Kusalik A; Napper S
    Biochem Soc Trans; 2017 Feb; 45(1):65-77. PubMed ID: 28202660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinome profiling of clinical cancer specimens.
    Parikh K; Peppelenbosch MP
    Cancer Res; 2010 Apr; 70(7):2575-8. PubMed ID: 20332226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptide arrays for kinome analysis: new opportunities and remaining challenges.
    Arsenault R; Griebel P; Napper S
    Proteomics; 2011 Dec; 11(24):4595-609. PubMed ID: 22002874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drug Discovery in Liver Disease Using Kinome Profiling.
    Yu B; Mamedov R; Fuhler GM; Peppelenbosch MP
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Array-based proteomic approaches to study signal transduction pathways: prospects, merits and challenges.
    Gahoi N; Ray S; Srivastava S
    Proteomics; 2015 Jan; 15(2-3):218-31. PubMed ID: 25266292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antibody-based proteomics: analysis of signaling networks using reverse protein arrays.
    Voshol H; Ehrat M; Traenkle J; Bertrand E; van Oostrum J
    FEBS J; 2009 Dec; 276(23):6871-9. PubMed ID: 19860827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for kinome profiling in cancer and potential clinical applications: chemical proteomics and array-based methods.
    Piersma SR; Labots M; Verheul HM; Jiménez CR
    Anal Bioanal Chem; 2010 Aug; 397(8):3163-71. PubMed ID: 20526883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale profiling of protein kinases for cellular signaling studies by mass spectrometry and other techniques.
    Sugiyama N; Ishihama Y
    J Pharm Biomed Anal; 2016 Oct; 130():264-272. PubMed ID: 27301379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimizing targeted cancer therapy: towards clinical application of systems biology approaches.
    Sikkema AH; den Dunnen WF; Diks SH; Peppelenbosch MP; de Bont ES
    Crit Rev Oncol Hematol; 2012 May; 82(2):171-86. PubMed ID: 21641230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of reverse phase protein array (RPPA)-based pathway-activation profiling in 84 non-small cell lung cancer (NSCLC) cell lines as platform for cancer proteomics and biomarker discovery.
    Ummanni R; Mannsperger HA; Sonntag J; Oswald M; Sharma AK; König R; Korf U
    Biochim Biophys Acta; 2014 May; 1844(5):950-9. PubMed ID: 24361481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots.
    Scholma J; Fuhler GM; Joore J; Hulsman M; Schivo S; List AF; Reinders MJ; Peppelenbosch MP; Post JN
    Sci Rep; 2016 May; 6():26695. PubMed ID: 27225531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling pathway profiling using reverse-phase protein array and its clinical applications.
    Masuda M; Yamada T
    Expert Rev Proteomics; 2017 Jul; 14(7):607-615. PubMed ID: 28621158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of kinase target phosphorylation consensus motifs using peptide SPOT arrays.
    Leung GC; Murphy JM; Briant D; Sicheri F
    Methods Mol Biol; 2009; 570():187-95. PubMed ID: 19649593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide chip analysis.
    de la Fuente van Bentem S; Anrather D; Dohnal I; Roitinger E; Csaszar E; Joore J; Buijnink J; Carreri A; Forzani C; Lorkovic ZJ; Barta A; Lecourieux D; Verhounig A; Jonak C; Hirt H
    J Proteome Res; 2008 Jun; 7(6):2458-70. PubMed ID: 18433157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a minimal eukaryotic phosphoproteome?
    Diks SH; Parikh K; van der Sijde M; Joore J; Ritsema T; Peppelenbosch MP
    PLoS One; 2007 Aug; 2(8):e777. PubMed ID: 17712425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From Beef to Bees: High-Throughput Kinome Analysis to Understand Host Responses of Livestock Species to Infectious Diseases and Industry-Associated Stress.
    Facciuolo A; Denomy C; Lipsit S; Kusalik A; Napper S
    Front Immunol; 2020; 11():765. PubMed ID: 32499776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase activity profiling of postmortem human brain tissue.
    Hoozemans JJ; Hilhorst R; Ruijtenbeek R; Rozemuller AJ; van der Vies SM
    Neurodegener Dis; 2012; 10(1-4):46-8. PubMed ID: 22343098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein kinase substrate identification on functional protein arrays.
    Meng L; Michaud GA; Merkel JS; Zhou F; Huang J; Mattoon DR; Schweitzer B
    BMC Biotechnol; 2008 Feb; 8():22. PubMed ID: 18307815
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.