BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 2724185)

  • 1. Metabolic interactions between glucose, glycerol, alanine and acetate in Leishmania braziliensis panamensis promastigotes.
    Darling TN; Davis DG; London RE; Blum JJ
    J Protozool; 1989; 36(2):217-25. PubMed ID: 2724185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol.
    Darling TN; Davis DG; London RE; Blum JJ
    Proc Natl Acad Sci U S A; 1987 Oct; 84(20):7129-33. PubMed ID: 3478686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation of glucose, ribose, alanine, and glutamate by Leishmania braziliensis panamensis.
    Keegan FP; Sansone L; Blum JJ
    J Protozool; 1987 May; 34(2):174-9. PubMed ID: 2884307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of oxygen concentration on the intermediary metabolism of Leishmania major promastigotes.
    Keegan F; Blum JJ
    Mol Biochem Parasitol; 1990 Mar; 39(2):235-45. PubMed ID: 2108330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon dioxide abolishes the reverse Pasteur effect in Leishmania major promastigotes.
    Darling TN; Davis DG; London RE; Blum JJ
    Mol Biochem Parasitol; 1989 Mar; 33(2):191-202. PubMed ID: 2498656
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-lactate production by Leishmania braziliensis through the glyoxalase pathway.
    Darling TN; Blum JJ
    Mol Biochem Parasitol; 1988 Mar; 28(2):121-7. PubMed ID: 3130573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes.
    Rainey PM; MacKenzie NE
    Mol Biochem Parasitol; 1991 Apr; 45(2):307-15. PubMed ID: 1903845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of osmotic pressure on the oxidative metabolism of Leishmania major promastigotes.
    Blum JJ
    J Protozool; 1991; 38(3):229-33. PubMed ID: 1679134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate.
    Rabkin M; Blum JJ
    Biochem J; 1985 Feb; 225(3):761-86. PubMed ID: 3919712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of fatty acids by Leishmania braziliensis panamensis.
    Blum JJ
    J Protozool; 1987 May; 34(2):169-74. PubMed ID: 3585816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of alanine, acetate, glutamate, and succinate by digitonin-permeabilized Leishmania major promastigotes.
    Blum JJ
    J Eukaryot Microbiol; 1996; 43(2):144-50. PubMed ID: 8720944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycerol 3-phosphate and lactate as indicators of the cerebral cytoplasmic redox state in severe and mild hypoxia respectively: a 13C- and 31P-n.m.r. study.
    Ben-Yoseph O; Badar-Goffer RS; Morris PG; Bachelard HS
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):915-9. PubMed ID: 8098210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of D-lactate, L-lactate and glycerol formation by four species of Leishmania and by Trypanosoma lewisi and Trypanosoma brucei gambiense.
    Darling TN; Balber AE; Blum JJ
    Mol Biochem Parasitol; 1988 Sep; 30(3):253-7. PubMed ID: 3054535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of pyruvate, alanine and glutamate by isolated fat cells and their effects on glycerol metabolism.
    Bellido J; Herrera E
    Rev Esp Fisiol; 1978 Dec; 34(4):429-36. PubMed ID: 741065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-13 nuclear magnetic resonance analysis of [1-13C]glucose metabolism in Trypanosoma cruzi. Evidence of the presence of two alanine pools and of two CO2 fixation reactions.
    Frydman B; de los Santos C; Cannata JJ; Cazzulo JJ
    Eur J Biochem; 1990 Sep; 192(2):363-8. PubMed ID: 2120054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon-13 nuclear magnetic resonance analysis of [1-13C]glucose metabolism in Crithidia fasciculata. Evidence of CO2 fixation by phosphoenolpyruvate carboxykinase.
    de los Santos C; Buldain G; Frydman B; Cannata JJ; Cazzulo JJ
    Eur J Biochem; 1985 Jun; 149(2):421-9. PubMed ID: 3922760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of [1,3-13C]glycerol-1,2,3-tris(methylsuccinate) and glycerol-1,2,3-tris(methyl[2,3-13C]succinate) in rat hepatocytes.
    Malaisse WJ; Ladrière L; Verbruggen I; Grue-Sørenson G; Björkling F; Willem R
    Metabolism; 2000 Feb; 49(2):178-85. PubMed ID: 10690941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro substrate utilization for lipid synthesis in liver explants from hyperthyroid chickens.
    Rosebrough RW
    Comp Biochem Physiol Comp Physiol; 1993 Dec; 106(4):823-30. PubMed ID: 7906642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilization of glucose, alanine, lactate, and glycerol as lipogenic substrates by periuterine adipose tissue in situ in fed and starved rats.
    Palacín M; Lasunción MA; Herrera E
    J Lipid Res; 1988 Jan; 29(1):26-32. PubMed ID: 3356949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy metabolism in Leishmania.
    Blum JJ
    J Bioenerg Biomembr; 1994 Apr; 26(2):147-55. PubMed ID: 8056781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.