These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27241950)

  • 1. Effects of a combined inversion and plantarflexion surface on knee and hip kinematics during landing.
    Valenzuela KA; Bhaskaran D; Hummer C; Schefano A; Zhang S
    Sports Biomech; 2016 Nov; 15(4):429-39. PubMed ID: 27241950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower-Extremity Kinematics During Ankle Inversion Perturbations: A Novel Experimental Protocol That Simulates an Unexpected Lateral Ankle Sprain Mechanism.
    Simpson JD; Stewart EM; Mosby AM; Macias DM; Chander H; Knight AC
    J Sport Rehabil; 2019 Aug; 28(6):593-600. PubMed ID: 30040015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between performance of a single-leg squat and leap landing task: moving towards a netball-specific anterior cruciate ligament (ACL) injury risk screening method.
    Fox AS; Bonacci J; Saunders N
    Sports Biomech; 2020 Aug; 19(4):493-509. PubMed ID: 30152717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Foot-Landing Positions at Initial Contact on Knee Flexion Angles for Single-Leg Drop Landings.
    Teng PSP; Leong KF; Kong PW
    Res Q Exerc Sport; 2020 Jun; 91(2):316-325. PubMed ID: 31774376
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of Prophylactic Knee Bracing on Lower Limb Kinematics, Kinetics, and Energetics During Double-Leg Drop Landing at 2 Heights.
    Ewing KA; Begg RK; Galea MP; Lee PV
    Am J Sports Med; 2016 Jul; 44(7):1753-61. PubMed ID: 27159284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.
    Hansberger BL; Acocello S; Slater LV; Hart JM; Ambegaonkar JP
    J Athl Train; 2018 Apr; 53(4):379-385. PubMed ID: 29528687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of decision making on landing mechanics as a function of task and sex.
    Mache MA; Hoffman MA; Hannigan K; Golden GM; Pavol MJ
    Clin Biomech (Bristol, Avon); 2013 Jan; 28(1):104-9. PubMed ID: 23121775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Ankle Bracing on Kinematics in Simulated Sprain and Drop Landings: A Double-Blind, Placebo-Controlled Study.
    Agres AN; Chrysanthou M; Raffalt PC
    Am J Sports Med; 2019 May; 47(6):1480-1487. PubMed ID: 31042441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two- and Three-Dimensional Relationships Between Knee and Hip Kinematic Motion Analysis: Single-Leg Drop-Jump Landings.
    Sorenson B; Kernozek TW; Willson JD; Ragan R; Hove J
    J Sport Rehabil; 2015 Nov; 24(4):363-72. PubMed ID: 25658442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvements in landing biomechanics following anterior cruciate ligament reconstruction in adolescent athletes.
    Mueske NM; Patel AR; Pace JL; Zaslow TL; VandenBerg CD; Katzel MJ; Edison BR; Wren TAL
    Sports Biomech; 2020 Dec; 19(6):738-749. PubMed ID: 30274539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences and correlations in knee and hip mechanics during single-leg landing, single-leg squat, double-leg landing, and double-leg squat tasks.
    Donohue MR; Ellis SM; Heinbaugh EM; Stephenson ML; Zhu Q; Dai B
    Res Sports Med; 2015; 23(4):394-411. PubMed ID: 26275102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Landing instructions focused on pelvic and trunk lateral tilt decrease the knee abduction moment during a single-leg drop vertical jump.
    Chijimatsu M; Ishida T; Yamanaka M; Taniguchi S; Ueno R; Ikuta R; Samukawa M; Ino T; Kasahara S; Tohyama H
    Phys Ther Sport; 2020 Nov; 46():226-233. PubMed ID: 32992140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is the inverted surface landing more suitable in evaluating ankle braces and ankle inversion perturbation?
    Chen Q; Wortley M; Bhaskaran D; Milner CE; Zhang S
    Clin J Sport Med; 2012 May; 22(3):214-20. PubMed ID: 22382431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instability.
    Hoch MC; Farwell KE; Gaven SL; Weinhandl JT
    J Athl Train; 2015 Aug; 50(8):833-9. PubMed ID: 26067428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Volitional Spine Stabilization During a Drop Vertical Jump From Different Landing Heights: Implications for Anterior Cruciate Ligament Injury.
    Haddas R; Hooper T; James CR; Sizer PS
    J Athl Train; 2016 Dec; 51(12):1003-1012. PubMed ID: 27874298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restricting ankle dorsiflexion does not mitigate the benefits of external focus of attention on landing biomechanics in healthy females.
    Haines M; Murray AM; Glaviano NR; Gokeler A; Norte GE
    Hum Mov Sci; 2020 Dec; 74():102719. PubMed ID: 33232855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shoe collar height and heel counter-stiffness for shoe cushioning and joint stability in landing.
    Lam WK; Cheung CC; Leung AK
    J Sports Sci; 2020 Oct; 38(20):2374-2381. PubMed ID: 32600128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Timing of lower extremity frontal plane motion differs between female and male athletes during a landing task.
    Joseph MF; Rahl M; Sheehan J; MacDougall B; Horn E; Denegar CR; Trojian TH; Anderson JM; Kraemer WJ
    Am J Sports Med; 2011 Jul; 39(7):1517-21. PubMed ID: 21383083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weightbearing ankle dorsiflexion range of motion and sagittal plane kinematics during single leg drop jump landing in healthy male athletes.
    Dowling B; Mcpherson AL; Paci JM
    J Sports Med Phys Fitness; 2018 Jun; 58(6):867-874. PubMed ID: 28639442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Professional Dancers Distinct Biomechanical Pattern during Multidirectional Landings.
    Azevedo AM; Oliveira R; Vaz JR; Cortes N
    Med Sci Sports Exerc; 2019 Mar; 51(3):539-547. PubMed ID: 30363007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.