These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 27242347)

  • 1. Lithography-free shell-substrate isolation for core-shell GaAs nanowires.
    Haggren T; Perros AP; Jiang H; Huhtio T; Kakko JP; Dhaka V; Kauppinen E; Lipsanen H
    Nanotechnology; 2016 Jul; 27(27):275603. PubMed ID: 27242347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Position-controlled uniform GaAs nanowires on silicon using nanoimprint lithography.
    Munshi AM; Dheeraj DL; Fauske VT; Kim DC; Huh J; Reinertsen JF; Ahtapodov L; Lee KD; Heidari B; van Helvoort AT; Fimland BO; Weman H
    Nano Lett; 2014 Feb; 14(2):960-6. PubMed ID: 24467394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocurrent properties of single GaAs/AlGaAs core-shell nanowires with Schottky contacts.
    Persano A; Taurino A; Prete P; Lovergine N; Nabet B; Cola A
    Nanotechnology; 2012 Nov; 23(46):465701. PubMed ID: 23093063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GaAs nanowires with oxidation-proof arsenic capping for the growth of an epitaxial shell.
    Guan X; Becdelievre J; Benali A; Botella C; Grenet G; Regreny P; Chauvin N; Blanchard NP; Jaurand X; Saint-Girons G; Bachelet R; Gendry M; Penuelas J
    Nanoscale; 2016 Aug; 8(34):15637-44. PubMed ID: 27513669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A technique for large-area position-controlled growth of GaAs nanowire arrays.
    Kauppinen C; Haggren T; Kravchenko A; Jiang H; Huhtio T; Kauppinen E; Dhaka V; Suihkonen S; Kaivola M; Lipsanen H; Sopanen M
    Nanotechnology; 2016 Apr; 27(13):135601. PubMed ID: 26895144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111).
    Hakkarainen TV; Schramm A; Mäkelä J; Laukkanen P; Guina M
    Nanotechnology; 2015 Jul; 26(27):275301. PubMed ID: 26087248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical mechanism of surface roughening of the radial Ge-core/Si-shell nanowire heterostructure and thermodynamic prediction of surface stability of the InAs-core/GaAs-shell nanowire structure.
    Cao YY; Ouyang G; Wang CX; Yang GW
    Nano Lett; 2013 Feb; 13(2):436-43. PubMed ID: 23297740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel Growth Method To Improve the Quality of GaAs Nanowires Grown by Ga-Assisted Chemical Beam Epitaxy.
    García Núñez C; Braña AF; López N; García BJ
    Nano Lett; 2018 Jun; 18(6):3608-3615. PubMed ID: 29739187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wurtzite GaAs/AlGaAs core-shell nanowires grown by molecular beam epitaxy.
    Zhou HL; Hoang TB; Dheeraj DL; van Helvoort AT; Liu L; Harmand JC; Fimland BO; Weman H
    Nanotechnology; 2009 Oct; 20(41):415701. PubMed ID: 19755725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the Optimal Shell Thickness for Self-Catalyzed GaAs/AlGaAs Core-Shell Nanowires on Silicon.
    Songmuang R; Giang le TT; Bleuse J; Den Hertog M; Niquet YM; Dang le S; Mariette H
    Nano Lett; 2016 Jun; 16(6):3426-33. PubMed ID: 27081785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale investigation of a radial p-n junction in self-catalyzed GaAs nanowires grown on Si (111).
    Piazza V; Vettori M; Ahmed AA; Lavenus P; Bayle F; Chauvin N; Julien FH; Regreny P; Patriarche G; Fave A; Gendry M; Tchernycheva M
    Nanoscale; 2018 Nov; 10(43):20207-20217. PubMed ID: 30357204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes.
    Rieger T; Luysberg M; Schäpers T; Grützmacher D; Lepsa MI
    Nano Lett; 2012 Nov; 12(11):5559-64. PubMed ID: 23030380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOVPE growth of GaP/GaPN core-shell nanowires: N incorporation, morphology and crystal structure.
    Steidl M; Schwarzburg K; Galiana B; Kups T; Supplie O; Kleinschmidt P; Lilienkamp G; Hannappel T
    Nanotechnology; 2019 Mar; 30(10):104002. PubMed ID: 30523951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GaAs/GaAsPBi core-shell nanowires grown by molecular beam epitaxy.
    Himwas C; Yordsri V; Thanachayanont C; Tchernycheva M; Panyakeow S; Kanjanachuchai S
    Nanotechnology; 2021 Dec; 33(9):. PubMed ID: 34781278
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ mechanical resonance behaviour of pristine and defective zinc blende GaAs nanowires.
    Pickering E; Bo A; Zhan H; Liao X; Tan HH; Gu Y
    Nanoscale; 2018 Feb; 10(5):2588-2595. PubMed ID: 29350729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epitaxial Growth of Ordered In-Plane Si and Ge Nanowires on Si (001).
    Wang JH; Wang T; Zhang JJ
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33808713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoimprint and selective-area MOVPE for growth of GaAs/InAs core/shell nanowires.
    Haas F; Sladek K; Winden A; von der Ahe M; Weirich TE; Rieger T; Lüth H; Grützmacher D; Schäpers T; Hardtdegen H
    Nanotechnology; 2013 Mar; 24(8):085603. PubMed ID: 23385879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regrowth mechanism for oxide isolation of GaAs nanowires.
    Dvorak D; Darbandi A; Kavanagh KL; Watkins SP
    Nanotechnology; 2017 Sep; 28(38):385302. PubMed ID: 28714859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved photoluminescence characterization of GaAs nanowire arrays on native substrate.
    Dagytė V; Barrigón E; Zhang W; Zeng X; Heurlin M; Otnes G; Anttu N; Borgström MT
    Nanotechnology; 2017 Dec; 28(50):505706. PubMed ID: 29087959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth and characterization of GaAs nanowires on carbon nanotube composite films: toward flexible nanodevices.
    Mohseni PK; Lawson G; Couteau C; Weihs G; Adronov A; LaPierre RR
    Nano Lett; 2008 Nov; 8(11):4075-80. PubMed ID: 18954120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.