These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 27242445)
1. Push-Pull Receptive Field Organization and Synaptic Depression: Mechanisms for Reliably Encoding Naturalistic Stimuli in V1. Kremkow J; Perrinet LU; Monier C; Alonso JM; Aertsen A; Frégnac Y; Masson GS Front Neural Circuits; 2016; 10():37. PubMed ID: 27242445 [TBL] [Abstract][Full Text] [Related]
2. An Anatomically Constrained Model of V1 Simple Cells Predicts the Coexistence of Push-Pull and Broad Inhibition. Taylor MM; Contreras D; Destexhe A; Frégnac Y; Antolik J J Neurosci; 2021 Sep; 41(37):7797-7812. PubMed ID: 34321313 [TBL] [Abstract][Full Text] [Related]
3. Synaptic physiology and receptive field structure in the early visual pathway of the cat. Hirsch JA Cereb Cortex; 2003 Jan; 13(1):63-9. PubMed ID: 12466216 [TBL] [Abstract][Full Text] [Related]
4. Receptive field self-organization in a model of the fine structure in v1 cortical columns. Lücke J Neural Comput; 2009 Oct; 21(10):2805-45. PubMed ID: 19548804 [TBL] [Abstract][Full Text] [Related]
5. Receptive field structure varies with layer in the primary visual cortex. Martinez LM; Wang Q; Reid RC; Pillai C; Alonso JM; Sommer FT; Hirsch JA Nat Neurosci; 2005 Mar; 8(3):372-9. PubMed ID: 15711543 [TBL] [Abstract][Full Text] [Related]
6. Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neurons. Baudot P; Levy M; Marre O; Monier C; Pananceau M; Frégnac Y Front Neural Circuits; 2013; 7():206. PubMed ID: 24409121 [TBL] [Abstract][Full Text] [Related]
7. Inhibition in Simple Cell Receptive Fields Is Broad and OFF-Subregion Biased. Taylor MM; Sedigh-Sarvestani M; Vigeland L; Palmer LA; Contreras D J Neurosci; 2018 Jan; 38(3):595-612. PubMed ID: 29196320 [TBL] [Abstract][Full Text] [Related]
8. The importance of modulatory input for V1 activity and perception. Paradiso MA; MacEvoy SP; Huang X; Blau S Prog Brain Res; 2005; 149():257-67. PubMed ID: 16226589 [TBL] [Abstract][Full Text] [Related]
9. 'Top-down' influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat's striate cortex. Bardy C; Huang JY; Wang C; Fitzgibbon T; Dreher B Neuroscience; 2009 Jan; 158(2):951-68. PubMed ID: 18976693 [TBL] [Abstract][Full Text] [Related]
10. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models. Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629 [TBL] [Abstract][Full Text] [Related]
11. Understanding layer 4 of the cortical circuit: a model based on cat V1. Miller KD Cereb Cortex; 2003 Jan; 13(1):73-82. PubMed ID: 12466218 [TBL] [Abstract][Full Text] [Related]
12. Sparse coding and decorrelation in primary visual cortex during natural vision. Vinje WE; Gallant JL Science; 2000 Feb; 287(5456):1273-6. PubMed ID: 10678835 [TBL] [Abstract][Full Text] [Related]
13. A possible basic cortical microcircuit called "cascaded inhibition." Results from cortical network models and recording experiments from striate simple cells. Wörgötter F; Nelle E; Li B; Wang L; Diao Y Exp Brain Res; 1998 Oct; 122(3):318-32. PubMed ID: 9808305 [TBL] [Abstract][Full Text] [Related]
14. Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Haider B; Krause MR; Duque A; Yu Y; Touryan J; Mazer JA; McCormick DA Neuron; 2010 Jan; 65(1):107-21. PubMed ID: 20152117 [TBL] [Abstract][Full Text] [Related]
15. Toward a Biologically Plausible Model of LGN-V1 Pathways Based on Efficient Coding. Lian Y; Grayden DB; Kameneva T; Meffin H; Burkitt AN Front Neural Circuits; 2019; 13():13. PubMed ID: 30930752 [TBL] [Abstract][Full Text] [Related]
16. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Angelucci A; Bressloff PC Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705 [TBL] [Abstract][Full Text] [Related]
17. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat. Ishikawa A; Shimegi S; Kida H; Sato H Eur J Neurosci; 2010 Jun; 31(11):2086-100. PubMed ID: 20604803 [TBL] [Abstract][Full Text] [Related]
18. Influence of 'feedback' signals on spatial integration in receptive fields of cat area 17 neurons. Wang C; Huang JY; Bardy C; FitzGibbon T; Dreher B Brain Res; 2010 Apr; 1328():34-48. PubMed ID: 20206150 [TBL] [Abstract][Full Text] [Related]
19. Shunting inhibition, a silent step in visual cortical computation. Frégnac Y; Monier C; Chavane F; Baudot P; Graham L J Physiol Paris; 2003; 97(4-6):441-51. PubMed ID: 15242656 [TBL] [Abstract][Full Text] [Related]
20. Feedforward excitation and inhibition evoke dual modes of firing in the cat's visual thalamus during naturalistic viewing. Wang X; Wei Y; Vaingankar V; Wang Q; Koepsell K; Sommer FT; Hirsch JA Neuron; 2007 Aug; 55(3):465-78. PubMed ID: 17678858 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]