BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27242681)

  • 1. Transcriptome Analysis of Scrippsiella trochoidea CCMP 3099 Reveals Physiological Changes Related to Nitrate Depletion.
    Cooper JT; Sinclair GA; Wawrik B
    Front Microbiol; 2016; 7():639. PubMed ID: 27242681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome and metabolome analyses of cold and darkness-induced pellicle cysts of Scrippsiella trochoidea.
    Guo X; Wang Z; Liu L; Li Y
    BMC Genomics; 2021 Jul; 22(1):526. PubMed ID: 34246248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the Energetic Metabolism of Resting Cysts under Different Conditions from Molecular and Physiological Perspectives in the Harmful Algal Blooms-Forming Dinoflagellate
    Li F; Yang A; Hu Z; Lin S; Deng Y; Tang YZ
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and Partial Characterization of a Cold Shock Domain-Containing Protein Gene from the Dinoflagellate Scrippsiella trochoidea.
    Deng Y; Hu Z; Chai Z; Tang YZ
    J Eukaryot Microbiol; 2019 May; 66(3):393-403. PubMed ID: 30099808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo Transcriptome of the Non-saxitoxin Producing
    Vingiani GM; Štālberga D; De Luca P; Ianora A; De Luca D; Lauritano C
    Mar Drugs; 2020 Jul; 18(8):. PubMed ID: 32722301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyphyletic origin of saxitoxin biosynthesis genes in the marine dinoflagellate Alexandrium revealed by comparative transcriptomics.
    Bui QTN; Kim HS; Ki JS
    Harmful Algae; 2024 Apr; 134():102620. PubMed ID: 38705616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional Responses of the Heat Shock Protein 20 (Hsp20) and 40 (Hsp40) Genes to Temperature Stress and Alteration of Life Cycle Stages in the Harmful Alga
    Deng Y; Hu Z; Shang L; Chai Z; Tang YZ
    Biology (Basel); 2020 Nov; 9(11):. PubMed ID: 33233461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptomic response of the red tide dinoflagellate, Karenia brevis, to nitrogen and phosphorus depletion and addition.
    Morey JS; Monroe EA; Kinney AL; Beal M; Johnson JG; Hitchcock GL; Van Dolah FM
    BMC Genomics; 2011 Jul; 12():346. PubMed ID: 21729317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptomic Profile and Sexual Reproduction-Relevant Genes of
    Meng FQ; Song JT; Zhou J; Cai ZH
    Front Microbiol; 2019; 10():2629. PubMed ID: 31803162
    [No Abstract]   [Full Text] [Related]  

  • 10. Physiological and transcriptional responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: Implications for the saxitoxin genes and toxin production.
    Hii KS; Lim PT; Kon NF; Takata Y; Usup G; Leaw CP
    Harmful Algae; 2016 Jun; 56():9-21. PubMed ID: 28073499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress.
    Haley ST; Alexander H; Juhl AR; Dyhrman ST
    Harmful Algae; 2017 Sep; 68():258-270. PubMed ID: 28962986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression Patterns of the Heat Shock Protein 90 (Hsp90) Gene Suggest Its Possible Involvement in Maintaining the Dormancy of Dinoflagellate Resting Cysts.
    Deng Y; Li F; Hu Z; Yue C; Tang YZ
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. De novo assembly of Aureococcus anophagefferens transcriptomes reveals diverse responses to the low nutrient and low light conditions present during blooms.
    Frischkorn KR; Harke MJ; Gobler CJ; Dyhrman ST
    Front Microbiol; 2014; 5():375. PubMed ID: 25104951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): Predator of diverse toxic and harmful dinoflagellates.
    Jeong HJ; Ok JH; Lim AS; Kwon JE; Kim SJ; Lee SY
    Harmful Algae; 2016 Dec; 60():92-106. PubMed ID: 28073566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptomic Analyses of
    Deng Y; Hu Z; Shang L; Peng Q; Tang YZ
    Front Microbiol; 2017; 8():2450. PubMed ID: 29312167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Algicidal activity against red-tide algaes by marine bacterial strain N3 isolated from a HABs area, southern China].
    Shi RJ; Huang HH; Qi ZH; Hu WA; Tian ZY; Dai M
    Huan Jing Ke Xue; 2013 May; 34(5):1922-9. PubMed ID: 23914549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomic studies of a Scrippsiella acuminata bloom with its laboratory-grown culture using a
    Tse SPK; Lo SCL
    Harmful Algae; 2017 Jul; 67():26-35. PubMed ID: 28755718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro allelopathic effects of compounds from Cerbera manghas L. on three Dinophyta species responsible for harmful common red tides.
    Chen Q; Sun D; Fang T; Zhu B; Liu W; He X; Sun X; Duan S
    Sci Total Environ; 2021 Feb; 754():142253. PubMed ID: 33254874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined Effects of Ocean Acidification and Light or Nitrogen Availabilities on 13C Fractionation in Marine Dinoflagellates.
    Hoins M; Eberlein T; Groβmann CH; Brandenburg K; Reichart GJ; Rost B; Sluijs A; Van de Waal DB
    PLoS One; 2016; 11(5):e0154370. PubMed ID: 27153107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deficiency of nitrogen but not phosphorus triggers the life cycle transition of the dinoflagellate Scrippsiella acuminata from vegetative growth to resting cyst formation.
    Yue C; Chai Z; Hu Z; Shang L; Deng Y; Tang YZ
    Harmful Algae; 2022 Oct; 118():102312. PubMed ID: 36195426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.