These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27242870)

  • 1. Trade-Offs between Economic and Environmental Impacts of Introducing Legumes into Cropping Systems.
    Reckling M; Bergkvist G; Watson CA; Stoddard FL; Zander PM; Walker RL; Pristeri A; Toncea I; Bachinger J
    Front Plant Sci; 2016; 7():669. PubMed ID: 27242870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation.
    Iannetta PP; Young M; Bachinger J; Bergkvist G; Doltra J; Lopez-Bellido RJ; Monti M; Pappa VA; Reckling M; Topp CF; Walker RL; Rees RM; Watson CA; James EK; Squire GR; Begg GS
    Front Plant Sci; 2016; 7():1700. PubMed ID: 27917178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trade-offs and synergies between yield, labor, profit, and risk in Malawian maize-based cropping systems.
    Komarek AM; Koo J; Haile B; Msangi S; Azzarri C
    Agron Sustain Dev; 2018; 38(3):32. PubMed ID: 30930965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing trade-offs among productive, economic, and environmental indicators of forage systems in southern Tibetan crop-livestock integration.
    Duan C; Yu C; Shi P; Huangqing D; Zhang X; Dai E
    Sci Total Environ; 2023 Jun; 876():162641. PubMed ID: 36921851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grain legume yields are as stable as other spring crops in long-term experiments across northern Europe.
    Reckling M; Döring TF; Bergkvist G; Stoddard FL; Watson CA; Seddig S; Chmielewski FM; Bachinger J
    Agron Sustain Dev; 2018; 38(6):63. PubMed ID: 30873223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational trade-offs between yield increase and fertilizer inputs are essential for sustainable intensification: A case study in wheat-maize cropping systems in China.
    Li S; Lei Y; Zhang Y; Liu J; Shi X; Jia H; Wang C; Chen F; Chu Q
    Sci Total Environ; 2019 Aug; 679():328-336. PubMed ID: 31100561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grassland-Cropping Rotations: An Avenue for Agricultural Diversification to Reconcile High Production with Environmental Quality.
    Lemaire G; Gastal F; Franzluebbers A; Chabbi A
    Environ Manage; 2015 Nov; 56(5):1065-77. PubMed ID: 26070897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maize-grain legume intercropping for enhanced resource use efficiency and crop productivity in the Guinea savanna of northern Ghana.
    Kermah M; Franke AC; Adjei-Nsiah S; Ahiabor BDK; Abaidoo RC; Giller KE
    Field Crops Res; 2017 Nov; 213():38-50. PubMed ID: 29104356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: a two-year field study.
    Gao B; Ju X; Su F; Meng Q; Oenema O; Christie P; Chen X; Zhang F
    Sci Total Environ; 2014 Feb; 472():112-24. PubMed ID: 24291136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The nitrogen fertilizer replacement values of incorporated legumes residue to wheat on vertisols of the Ethiopian highlands.
    Regassa H; Elias E; Tekalign M; Legese G
    Heliyon; 2023 Nov; 9(11):e22119. PubMed ID: 38027901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Greening and legume-supported crop rotations: An impacts assessment on Italian arable farms.
    Cortignani R; Dono G
    Sci Total Environ; 2020 Sep; 734():139464. PubMed ID: 32480231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of cropping system diversification on productivity and resource use efficiencies of smallholder farmers in south-central Bangladesh: a multi-criteria analysis.
    Emran SA; Krupnik TJ; Aravindakshan S; Kumar V; Pittelkow CM
    Agron Sustain Dev; 2022; 42(4):78. PubMed ID: 35945988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input.
    Hauggaard-Nielsen H; Lachouani P; Knudsen MT; Ambus P; Boelt B; Gislum R
    Sci Total Environ; 2016 Jan; 541():1339-1347. PubMed ID: 26479907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Seasonal nitrous oxide and methane fluxes from grain- and forage-based production systems in wisconsin, USA.
    Osterholz WR; Kucharik CJ; Hedtcke JL; Posner JL
    J Environ Qual; 2014 Nov; 43(6):1833-43. PubMed ID: 25602200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers.
    Zhao J; Chen J; Beillouin D; Lambers H; Yang Y; Smith P; Zeng Z; Olesen JE; Zang H
    Nat Commun; 2022 Aug; 13(1):4926. PubMed ID: 35995796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determining the environmental and economic implications of lupin cultivation in wheat-based organic rotation systems in Galicia, Spain.
    Rebolledo-Leiva R; Almeida-García F; Pereira-Lorenzo S; Ruíz-Nogueira B; Moreira MT; González-García S
    Sci Total Environ; 2022 Nov; 845():157342. PubMed ID: 35842156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supporting wild pollinators in agricultural landscapes through targeted legume mixtures.
    Cole LJ; Baddeley JA; Robertson D; Topp CFE; Walker RL; Watson CA
    Agric Ecosyst Environ; 2022 Jan; 323():107648. PubMed ID: 34980933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios.
    Ma Y; Schwenke G; Sun L; Liu L; Wang B; Yang B
    Sci Total Environ; 2018 Jul; 630():1544-1552. PubMed ID: 29554771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconciling pesticide reduction with economic and environmental sustainability in arable farming.
    Lechenet M; Bretagnolle V; Bockstaller C; Boissinot F; Petit MS; Petit S; Munier-Jolain NM
    PLoS One; 2014; 9(6):e97922. PubMed ID: 24887494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N
    Kermah M; Franke AC; Adjei-Nsiah S; Ahiabor BDK; Abaidoo RC; Giller KE
    Agric Ecosyst Environ; 2018 Jul; 261():201-210. PubMed ID: 29970948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.