These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 2724318)
41. Analysis of molecular markers for metamorphic competency and their response to starvation or feeding in the mosquito, Aedes aegypti (Diptera: Culicidae). Telang A; Peterson B; Frame L; Baker E; Brown MR J Insect Physiol; 2010 Dec; 56(12):1925-34. PubMed ID: 20816681 [TBL] [Abstract][Full Text] [Related]
42. Temperature induces trade-offs between development and starvation resistance in Aedes aegypti (L.) larvae. Padmanabha H; Lord CC; Lounibos LP Med Vet Entomol; 2011 Dec; 25(4):445-53. PubMed ID: 21410734 [TBL] [Abstract][Full Text] [Related]
43. Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex). Ribeiro JM Med Vet Entomol; 2000 Jun; 14(2):142-8. PubMed ID: 10872858 [TBL] [Abstract][Full Text] [Related]
44. α-Humulene and β-elemene from Syzygium zeylanicum (Myrtaceae) essential oil: highly effective and eco-friendly larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus (Diptera: Culicidae). Govindarajan M; Benelli G Parasitol Res; 2016 Jul; 115(7):2771-8. PubMed ID: 27026503 [TBL] [Abstract][Full Text] [Related]
45. Antifeedancy of neem products containing Azadirachtin against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). Su T; Mulla MS J Vector Ecol; 1998 Dec; 23(2):114-22. PubMed ID: 9879068 [TBL] [Abstract][Full Text] [Related]
46. Mosquito larvicidal and ovicidal activity of puffer fish extracts against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). Samidurai K; Mathew N Trop Biomed; 2013 Mar; 30(1):27-35. PubMed ID: 23665705 [TBL] [Abstract][Full Text] [Related]
47. Efficacy of Czechoslovak and Soviet Bacillus thuringiensis (serotype H-14) formulations against mosquito larvae. Rettich F J Hyg Epidemiol Microbiol Immunol; 1987; 31(1):53-63. PubMed ID: 2883232 [TBL] [Abstract][Full Text] [Related]
48. Larval behavior of four Culex (Diptera: Culicidae) associated with treatment wetlands in the southwestern United States. Workman PD; Walton WE J Vector Ecol; 2003 Dec; 28(2):213-28. PubMed ID: 14714671 [TBL] [Abstract][Full Text] [Related]
49. Assessment of laboratory and field assays of sunlight-induced killing of mosquito larvae by photosensitizers. Dondji B; Duchon S; Diabate A; Herve JP; Corbel V; Hougard JM; Santus R; Schrevel J J Med Entomol; 2005 Jul; 42(4):652-6. PubMed ID: 16119556 [TBL] [Abstract][Full Text] [Related]
50. Effects of temperature, pH and salinity on the infection of Leptolegnia chapmanii Seymour (Peronosporomycetes) in mosquito larvae. Pelizza SA; López Lastra CC; Becnel JJ; Bisaro V; García JJ J Invertebr Pathol; 2007 Oct; 96(2):133-7. PubMed ID: 17521667 [TBL] [Abstract][Full Text] [Related]
51. Interspecies predation between Anopheles gambiae s.s. and Culex quinquefasciatus larvae. Muturi EJ; Kim CH; Jacob B; Murphy S; Novak RJ J Med Entomol; 2010 Mar; 47(2):287-90. PubMed ID: 20380312 [TBL] [Abstract][Full Text] [Related]
52. Oviposition substrate selection by Florida mosquitoes in response to pathogen-infected conspecific larvae. Zettel Nalen CM; Allan SA; Becnel JJ; Kaufman PE J Vector Ecol; 2013 Jun; 38(1):182-7. PubMed ID: 23701624 [TBL] [Abstract][Full Text] [Related]
53. The effect of predatory fish exudates on the ovipostional behaviour of three mosquito species: Culex quinquefasciatus, Aedes aegypti and Culex tarsalis. Van Dam AR; Walton WE Med Vet Entomol; 2008 Dec; 22(4):399-404. PubMed ID: 19120968 [TBL] [Abstract][Full Text] [Related]
54. Toxicity of a phenyl pyrazole insecticide, fipronil, to mosquito and chironomid midge larvae in the laboratory. Ali A; Nayar JK; Gu WD J Am Mosq Control Assoc; 1998 Jun; 14(2):216-8. PubMed ID: 9673927 [TBL] [Abstract][Full Text] [Related]
55. Laboratory bioassay to compare susceptibilities of Aedes aegypti and Anopheles albimanus to Bacillus thuringiensis var. israelensis as affected by their feeding rates. Mahmood F J Am Mosq Control Assoc; 1998 Mar; 14(1):69-71. PubMed ID: 9599326 [TBL] [Abstract][Full Text] [Related]
56. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus. Xue RD; Barnard DR; Ali A J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743 [TBL] [Abstract][Full Text] [Related]
57. Laboratory study on the mosquito larvicidal properties of leaf and seed extract of the plant Agave americana. Dharmshaktu NS; Prabhakaran PK; Menon PK J Trop Med Hyg; 1987 Apr; 90(2):79-82. PubMed ID: 2882030 [TBL] [Abstract][Full Text] [Related]
58. Biochemical and cytoimmunological evidence for the control of Aedes aegypti larval trypsin with Aea-TMOF. Borovsky D; Meola SM Arch Insect Biochem Physiol; 2004 Mar; 55(3):124-39. PubMed ID: 14981657 [TBL] [Abstract][Full Text] [Related]
59. Effect of entomopathogenic fungus, Beauveria bassiana on larvae of three species of mosquitoes. Geetha I; Balaraman K Indian J Exp Biol; 1999 Nov; 37(11):1148-50. PubMed ID: 10783749 [TBL] [Abstract][Full Text] [Related]
60. Mosquito larvae change their feeding behavior in response to kairomones from some predators. Roberts D J Med Entomol; 2014 Mar; 51(2):368-74. PubMed ID: 24724285 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]