These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 27243454)
1. Stimulus Specificity of Brain-Computer Interfaces Based on Code Modulation Visual Evoked Potentials. Wei Q; Feng S; Lu Z PLoS One; 2016; 11(5):e0156416. PubMed ID: 27243454 [TBL] [Abstract][Full Text] [Related]
2. VEP-based brain-computer interfaces modulated by Golay complementary series for improving performance. Wei Q; Huang Y; Li M; Lu Z Technol Health Care; 2016 Apr; 24 Suppl 2():S541-9. PubMed ID: 27163316 [TBL] [Abstract][Full Text] [Related]
3. A high-speed BCI based on code modulation VEP. Bin G; Gao X; Wang Y; Li Y; Hong B; Gao S J Neural Eng; 2011 Apr; 8(2):025015. PubMed ID: 21436527 [TBL] [Abstract][Full Text] [Related]
4. A multi-target brain-computer interface based on code modulated visual evoked potentials. Liu Y; Wei Q; Lu Z PLoS One; 2018; 13(8):e0202478. PubMed ID: 30118504 [TBL] [Abstract][Full Text] [Related]
5. High-Density Electroencephalogram Facilitates the Detection of Small Stimuli in Code-Modulated Visual Evoked Potential Brain-Computer Interfaces. Sun Q; Zhang S; Dong G; Pei W; Gao X; Wang Y Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894311 [TBL] [Abstract][Full Text] [Related]
6. Stimulus specificity of a steady-state visual-evoked potential-based brain-computer interface. Ng KB; Bradley AP; Cunnington R J Neural Eng; 2012 Jun; 9(3):036008. PubMed ID: 22589242 [TBL] [Abstract][Full Text] [Related]
7. A Novel c-VEP BCI Paradigm for Increasing the Number of Stimulus Targets Based on Grouping Modulation With Different Codes. Wei Q; Liu Y; Gao X; Wang Y; Yang C; Lu Z; Gong H IEEE Trans Neural Syst Rehabil Eng; 2018 Jun; 26(6):1178-1187. PubMed ID: 29877842 [TBL] [Abstract][Full Text] [Related]
8. Spatial decoupling of targets and flashing stimuli for visual brain-computer interfaces. Waytowich NR; Krusienski DJ J Neural Eng; 2015 Jun; 12(3):036006. PubMed ID: 25875047 [TBL] [Abstract][Full Text] [Related]
9. Optimal pseudorandom sequence selection for online c-VEP based BCI control applications. Isaksen JL; Mohebbi A; Puthusserypady S PLoS One; 2017; 12(9):e0184785. PubMed ID: 28902895 [TBL] [Abstract][Full Text] [Related]
10. A 120-target brain-computer interface based on code-modulated visual evoked potentials. Sun Q; Zheng L; Pei W; Gao X; Wang Y J Neurosci Methods; 2022 Jun; 375():109597. PubMed ID: 35427686 [TBL] [Abstract][Full Text] [Related]
11. Burst c-VEP Based BCI: Optimizing stimulus design for enhanced classification with minimal calibration data and improved user experience. Cabrera Castillos K; Ladouce S; Darmet L; Dehais F Neuroimage; 2023 Dec; 284():120446. PubMed ID: 37949256 [TBL] [Abstract][Full Text] [Related]
12. High-Frequency Discrete-Interval Binary Sequence in Asynchronous C-VEP-Based BCI for Visual Fatigue Reduction. Lai E; Mai X; Ji M; Li S; Meng J IEEE J Biomed Health Inform; 2024 May; 28(5):2769-2780. PubMed ID: 38442053 [TBL] [Abstract][Full Text] [Related]
13. SSVEP-based brain-computer interfaces using FSK-modulated visual stimuli. Kimura Y; Tanaka T; Higashi H; Morikawa N IEEE Trans Biomed Eng; 2013 Oct; 60(10):2831-8. PubMed ID: 23739780 [TBL] [Abstract][Full Text] [Related]
14. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces. Chang MH; Baek HJ; Lee SM; Park KS Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034 [TBL] [Abstract][Full Text] [Related]
15. An automated and fast approach to detect single-trial visual evoked potentials with application to brain-computer interface. Tu Y; Hung YS; Hu L; Huang G; Hu Y; Zhang Z Clin Neurophysiol; 2014 Dec; 125(12):2372-83. PubMed ID: 24794514 [TBL] [Abstract][Full Text] [Related]
16. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events. Wu Y; Li M; Wang J J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070 [TBL] [Abstract][Full Text] [Related]
17. Code-modulated visual evoked potentials using fast stimulus presentation and spatiotemporal beamformer decoding. Wittevrongel B; Van Wolputte E; Van Hulle MM Sci Rep; 2017 Nov; 7(1):15037. PubMed ID: 29118386 [TBL] [Abstract][Full Text] [Related]
18. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli. Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431 [TBL] [Abstract][Full Text] [Related]
19. Optimization of Visual Stimulus Sequence in a Brain-Computer Interface Based on Code Modulated Visual Evoked Potentials. Behboodi M; Mahnam A; Marateb H; Rabbani H IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):2762-2772. PubMed ID: 33320813 [TBL] [Abstract][Full Text] [Related]
20. Effect of higher frequency on the classification of steady-state visual evoked potentials. Won DO; Hwang HJ; Dähne S; Müller KR; Lee SW J Neural Eng; 2016 Feb; 13(1):016014. PubMed ID: 26695712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]