BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 27243606)

  • 1. Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation.
    Buyukada M
    Bioresour Technol; 2016 Sep; 216():280-6. PubMed ID: 27243606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic uncertainty analysis based on Monte Carlo simulations of co-combustion of hazelnut hull and coal blends: Data-driven modeling and response surface optimization.
    Buyukada M
    Bioresour Technol; 2017 Feb; 225():106-112. PubMed ID: 27888726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of thermal conversion characteristics and performance evaluation of co-combustion of pine sawdust and lignite coal using TGA, artificial neural network modeling and likelihood method.
    Buyukada M
    Bioresour Technol; 2019 Sep; 287():121461. PubMed ID: 31121444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uncertainty estimation by Bayesian approach in thermochemical conversion of walnut hull and lignite coal blends.
    Buyukada M
    Bioresour Technol; 2017 May; 232():87-92. PubMed ID: 28214700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of artificial neural networks to co-combustion of hazelnut husk-lignite coal blends.
    Yıldız Z; Uzun H; Ceylan S; Topcu Y
    Bioresour Technol; 2016 Jan; 200():42-7. PubMed ID: 26476163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA.
    Huang J; Mei LH; Xia J
    Biotechnol Bioeng; 2007 Apr; 96(5):924-31. PubMed ID: 16952178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized neural network to predict the experimental minimum period of coal spontaneous combustion.
    Xiao Y; Cao Y; Zhong KQ; Yin L; Deng J
    Environ Sci Pollut Res Int; 2022 Apr; 29(19):28070-28082. PubMed ID: 34984622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization.
    Kiranyaz S; Ince T; Yildirim A; Gabbouj M
    Neural Netw; 2009 Dec; 22(10):1448-62. PubMed ID: 19556105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion.
    Zhou C; Liu G; Cheng S; Fang T; Lam PK
    Bioresour Technol; 2014 Aug; 166():243-51. PubMed ID: 24914998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training.
    Meissner M; Schmuker M; Schneider G
    BMC Bioinformatics; 2006 Mar; 7():125. PubMed ID: 16529661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved least squares SVM with adaptive PSO for the prediction of coal spontaneous combustion.
    Zhang Q; Li HG
    Math Biosci Eng; 2019 Apr; 16(4):3169-3182. PubMed ID: 31137256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Noise on a Dynamical System: Prediction and Uncertainties from a Swarm-Optimized Neural Network.
    López-Caraballo CH; Lazzús JA; Salfate I; Rojas P; Rivera M; Palma-Chilla L
    Comput Intell Neurosci; 2015; 2015():145874. PubMed ID: 26351449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving neural networks prediction accuracy using particle swarm optimization combiner.
    Elragal HM
    Int J Neural Syst; 2009 Oct; 19(5):387-93. PubMed ID: 19885966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing Artificial Neural Networks Using Particle Swarm Optimization Algorithms.
    Garro BA; Vázquez RA
    Comput Intell Neurosci; 2015; 2015():369298. PubMed ID: 26221132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pretreatment optimization, process control, mass and energy balances and economics of anaerobic co-digestion of Arachis hypogaea (Peanut) hull and poultry manure.
    Dahunsi SO; Oranusi S; Efeovbokhan VE
    Bioresour Technol; 2017 Oct; 241():454-464. PubMed ID: 28599224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric assessment of stochastic variability in co-combustion of textile dyeing sludge and shaddock peel.
    Xie C; Liu J; Buyukada M; Evrendilek F; Samaksaman U; Kuo J; Ozyurt O
    Waste Manag; 2019 Aug; 96():128-135. PubMed ID: 31376956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The utility boiler low NOx combustion optimization based on ANN and simulated annealing algorithm].
    Zhou H; Qian X; Zheng L; Weng A; Cen K
    Huan Jing Ke Xue; 2003 Nov; 24(6):63-7. PubMed ID: 14768567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm.
    Banadkooki FB; Ehteram M; Ahmed AN; Teo FY; Ebrahimi M; Fai CM; Huang YF; El-Shafie A
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):38094-38116. PubMed ID: 32621196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Optimize the preparation process of Erigeron breviscapus sustained-release pellets based on artificial neural network and particle swarm optimization algorithm].
    Zhang JX; Chen YZ; Wu ZN; Liao WR
    Zhong Yao Cai; 2012 Jan; 35(1):127-33. PubMed ID: 22734423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural network and Monte Carlo simulation approach to investigate variability of copper concentration in phytoremediated contaminated soils.
    Hattab N; Hambli R; Motelica-Heino M; Mench M
    J Environ Manage; 2013 Nov; 129():134-42. PubMed ID: 23916835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.