These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 27244417)

  • 1. Zinc selenide-based large aperture photo-controlled deformable mirror.
    Quintavalla M; Bonora S; Natali D; Bianco A
    Opt Lett; 2016 Jun; 41(11):2573-5. PubMed ID: 27244417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and optimization of an adaptive optics system for a high-average-power multi-slab laser (HiLASE).
    Pilar J; Slezak O; Sikocinski P; Divoky M; Sawicka M; Bonora S; Lucianetti A; Mocek T; Jelinkova H
    Appl Opt; 2014 May; 53(15):3255-61. PubMed ID: 24922211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of deformable mirrors for ocular adaptive optics.
    Dalimier E; Dainty C
    Opt Express; 2005 May; 13(11):4275-85. PubMed ID: 19495342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoconductive optically driven deformable membrane for spatial light modulator applications utilizing GaAs substrates.
    Haji-Saeed B; Kolluru R; Pyburn D; Leon R; Sengupta SK; Testorf M; Goodhue W; Khoury J; Drehman A; Woods CL; Kierstead J
    Appl Opt; 2006 Apr; 45(12):2615-22. PubMed ID: 16633410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformable mirror with thermal actuators.
    Vdovin G; Loktev M
    Opt Lett; 2002 May; 27(9):677-9. PubMed ID: 18007896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoconductive optically driven deformable membrane under high-frequency bias: fabrication, characterization, and modeling.
    Haji-Saeed B; Kolluru R; Pyburn D; Leon R; Sengupta SK; Testorf M; Goodhue W; Khoury J; Drehman A; Woods CL; Kierstead J
    Appl Opt; 2006 May; 45(14):3226-36. PubMed ID: 16676026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically driven microelectromechanical-system deformable mirror under high-frequency AC bias.
    Khoury J; Drehman A; Woods CL; Haji-Saeed B; Sengupta SK; Goodhue W; Kierstead J
    Opt Lett; 2006 Mar; 31(6):808-10. PubMed ID: 16544631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High resolution wavefront correction with photocontrolled deformable mirror.
    Bonora S; Coburn D; Bortolozzo U; Dainty C; Residori S
    Opt Express; 2012 Feb; 20(5):5178-88. PubMed ID: 22418323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and simulation study of undesirable short-period deformation in piezoelectric deformable x-ray mirrors.
    Nakamori H; Matsuyama S; Imai S; Kimura T; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K
    Rev Sci Instrum; 2012 May; 83(5):053701. PubMed ID: 22667619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DM/LCWFC based adaptive optics system for large aperture telescopes imaging from visible to infrared waveband.
    Sun F; Cao Z; Wang Y; Zhang C; Zhang X; Liu Y; Mu Q; Xuan L
    Opt Express; 2016 Nov; 24(24):27494-27508. PubMed ID: 27906321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid deformable mirror for high-order wavefront correction.
    Vuelban EM; Bhattacharya N; Braat JJ
    Opt Lett; 2006 Jun; 31(11):1717-9. PubMed ID: 16688272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.
    Goto T; Nakamori H; Kimura T; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K; Matsuyama S
    Rev Sci Instrum; 2015 Apr; 86(4):043102. PubMed ID: 25933836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformable mirror model for open-loop adaptive optics using multivariate adaptive regression splines.
    Guzmán D; Juez FJ; Lasheras FS; Myers R; Young L
    Opt Express; 2010 Mar; 18(7):6492-505. PubMed ID: 20389672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First on-sky demonstration of the piezoelectric adaptive secondary mirror.
    Guo Y; Zhang A; Fan X; Rao C; Wei L; Xian H; Wei K; Zhang X; Guan C; Li M; Zhou L; Jin K; Zhang J; Deng J; Zhou L; Chen H; Zhang X; Zhang Y
    Opt Lett; 2016 Dec; 41(24):5712-5715. PubMed ID: 27973496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stitching interferometry for ellipsoidal x-ray mirrors.
    Yumoto H; Koyama T; Matsuyama S; Yamauchi K; Ohashi H
    Rev Sci Instrum; 2016 May; 87(5):051905. PubMed ID: 27250377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved compensation of turbulence-induced amplitude and phase distortions by means of multiple near-field phase adjustments.
    Barchers JD; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2001 Feb; 18(2):399-411. PubMed ID: 11205987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic response of ferrofluidic deformable mirrors.
    Parent J; Borra EF; Brousseau D; Ritcey AM; Déry JP; Thibault S
    Appl Opt; 2009 Jan; 48(1):1-6. PubMed ID: 19107163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically addressed microelectromechanical systems driven with high-frequency modulated light.
    Khoury J; Woods CL; Haji-Saeed B; Sengupta SK; Goodhue WD; Kierstead J
    Appl Opt; 2007 Mar; 46(8):1194-200. PubMed ID: 17318238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eye safety implications of high harmonic generation in zinc selenide.
    Marble CB; O'Connor SP; Nodurft DT; Wharmby AW; Yakovlev VV
    Opt Express; 2019 Feb; 27(3):2828-2836. PubMed ID: 30732314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zernike-based matrix model of deformable mirrors: optimization of aperture size.
    Alda J; Boreman GD
    Appl Opt; 1993 May; 32(13):2431-8. PubMed ID: 20820402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.