These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 27244562)

  • 1. Drying Mechanisms in Plasticized Latex Films: Role of Horizontal Drying Fronts.
    Divry V; Gromer A; Nassar M; Lambour C; Collin D; Holl Y
    J Phys Chem B; 2016 Jul; 120(27):6791-802. PubMed ID: 27244562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlating particle deformation with water concentration profiles during latex film formation: reasons that softer latex films take longer to dry.
    Carter FT; Kowalczyk RM; Millichamp I; Chainey M; Keddie JL
    Langmuir; 2014 Aug; 30(32):9672-81. PubMed ID: 25058916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a Routh-Russel deformation map to achieve film formation of a latex with a high glass transition temperature.
    Gonzalez E; Paulis M; Barandiaran MJ; Keddie JL
    Langmuir; 2013 Feb; 29(6):2044-53. PubMed ID: 23327465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrating optical coherence tomography with gravimetric and video analysis (OCT-Gravimetry-Video method) for studying the drying process of polystyrene latex system.
    Huang H; Huang Y; Lau W; Ou-Yang HD; Zhou C; El-Aasser MS
    Sci Rep; 2018 Aug; 8(1):12962. PubMed ID: 30154524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of Vertical Surfactant Distributions in Drying Latex Films.
    Gromer A; Thalmann F; Hébraud P; Holl Y
    Langmuir; 2017 Jan; 33(2):561-572. PubMed ID: 28001076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horizontal drying fronts in films of colloidal dispersions: influence of hydrostatic pressure and collective diffusion.
    Nassar M; Gromer A; Favier D; Thalmann F; Hébraud P; Holl Y
    Soft Matter; 2017 Dec; 13(48):9162-9173. PubMed ID: 29177309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Velocity of lateral drying fronts in film formation by drying of colloidal dispersions. A 2D simulation.
    Nassar M; Gromer A; Thalmann F; Hébraud P; Holl Y
    J Colloid Interface Sci; 2018 Feb; 511():424-433. PubMed ID: 29035805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of Latex Film Formation Using a Cell Model in Real Space: Vertical Drying.
    Gromer A; Nassar M; Thalmann F; Hébraud P; Holl Y
    Langmuir; 2015 Oct; 31(40):10983-94. PubMed ID: 26378376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drying rate variations of latex dispersions due to salt induced skin formation.
    Erkselius S; Wadsö L; Karlsson OJ
    J Colloid Interface Sci; 2008 Jan; 317(1):83-95. PubMed ID: 17949734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation between particle deformation kinetics and polymer interdiffusion kinetics in drying latex films.
    Pohl K; Adams J; Johannsmann D
    Langmuir; 2013 Sep; 29(36):11317-21. PubMed ID: 23957607
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of the rate of evaporation and film thickness on nonuniform drying of film-forming concentrated colloidal suspensions.
    Narita T; Hébraud P; Lequeux F
    Eur Phys J E Soft Matter; 2005 May; 17(1):69-76. PubMed ID: 15864729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Liquid marbles stabilized by charged polymer latexes: how does the drying of the latex particles affect the properties of liquid marbles?
    Sun G; Sheng Y; Wu J; Ma G; Ngai T
    Langmuir; 2014 Oct; 30(42):12503-8. PubMed ID: 25280669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of film thickness and particle size on cracking stresses in drying latex films.
    Yow HN; Goikoetxea M; Goehring L; Routh AF
    J Colloid Interface Sci; 2010 Dec; 352(2):542-8. PubMed ID: 20851402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling film formation of polymer-clay nanocomposite particles.
    Patel MJ; Gundabala VR; Routh AF
    Langmuir; 2010 Mar; 26(6):3962-71. PubMed ID: 19928792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface characterization of drying acrylic latex dispersions with variable methacrylic acid content using surface dilatational rheology.
    Voogt B; Venema P; Sagis L; Huinink H; Erich B; Scheerder J; Adan O
    J Colloid Interface Sci; 2019 Nov; 556():584-591. PubMed ID: 31491680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast drying and film formation of latex dispersions studied with FTIR spectroscopic imaging.
    Kimber JA; Gerst M; Kazarian SG
    Langmuir; 2014 Nov; 30(45):13588-95. PubMed ID: 25343527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mechanistic view of drying suspension droplets.
    van der Kooij HM; van de Kerkhof GT; Sprakel J
    Soft Matter; 2016 Mar; 12(11):2858-67. PubMed ID: 26843025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the effect of latex particle size and distribution on the rheological and adhesive properties of model waterborne acrylic pressure-sensitive adhesives films.
    do Amaral M; Roos A; Asua JM; Creton C
    J Colloid Interface Sci; 2005 Jan; 281(2):325-38. PubMed ID: 15571688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The migration of styrene butadiene latex during the drying of coating suspensions: when and how does migration of colloidal particles occur?
    Zang YH; Du J; Du Y; Wu Z; Cheng S; Liu Y
    Langmuir; 2010 Dec; 26(23):18331-9. PubMed ID: 21043465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Film formation from monodisperse acrylic latices 5. Drying and ageing in coalescing agent containing latex films.
    Zohrehvand S; Te Nijenhuis K
    J Colloid Interface Sci; 2005 Aug; 288(1):75-82. PubMed ID: 15927564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.