These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27244596)

  • 1. Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics.
    Yang Y; Zhen B; Hsu CW; Miller OD; Joannopoulos JD; Soljačić M
    Nano Lett; 2016 Jul; 16(7):4110-7. PubMed ID: 27244596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-Loss Plasmonic Dielectric Nanoresonators.
    Yang Y; Miller OD; Christensen T; Joannopoulos JD; Soljačić M
    Nano Lett; 2017 May; 17(5):3238-3245. PubMed ID: 28441499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable UV-Emitters through Graphene Plasmonics.
    Sloan J; Rivera N; Soljačić M; Kaminer I
    Nano Lett; 2018 Jan; 18(1):308-313. PubMed ID: 29240447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant near-field radiative heat transfer between ultrathin metallic films.
    Wang L; Bie M; Cai W; Ge L; Ji Z; Jia Y; Gong K; Zhang X; Wang J; Xu J
    Opt Express; 2019 Dec; 27(25):36790-36798. PubMed ID: 31873451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light scattering by a nanoparticle and a dipole placed near a dielectric surface covered by a thin metallic film.
    Geshev PI; Fischer UC; Fuchs H
    Opt Express; 2007 Oct; 15(21):13796-804. PubMed ID: 19550650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonics in Atomically Thin Crystalline Silver Films.
    Abd El-Fattah ZM; Mkhitaryan V; Brede J; Fernández L; Li C; Guo Q; Ghosh A; Echarri AR; Naveh D; Xia F; Ortega JE; García de Abajo FJ
    ACS Nano; 2019 Jul; 13(7):7771-7779. PubMed ID: 31188552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient spontaneous emission by metal-dielectric antennas; antenna Purcell factor explained.
    Hooten S; Andrade NM; Wu MC; Yablonovitch E
    Opt Express; 2021 Jul; 29(14):22018-22033. PubMed ID: 34265976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-thin Glass Film Coated with Graphene: A New Material for Spontaneous Emission Enhancement of Quantum Emitter.
    Sun L; Jiang C
    Nanomicro Lett; 2015; 7(3):261-267. PubMed ID: 30464970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics Models of Plasmonics: Single Nanoparticle, Complex Single Nanoparticle, Nanodimer, and Single Nanoparticle over Metallic Thin Film.
    Li W
    Plasmonics; 2018; 13(3):997-1014. PubMed ID: 29780289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy.
    Su L; Lu G; Kenens B; Rocha S; Fron E; Yuan H; Chen C; Van Dorpe P; Roeffaers MB; Mizuno H; Hofkens J; Hutchison JA; Uji-I H
    Nat Commun; 2015 Feb; 6():6287. PubMed ID: 25687887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep ultra-violet plasmonics: exploiting momentum-resolved electron energy loss spectroscopy to probe germanium.
    Poursoti Z; Sun W; Bharadwaj S; Malac M; Iyer S; Khosravi F; Cui K; Qi L; Nazemifard N; Jagannath R; Rahman R; Jacob Z
    Opt Express; 2022 Apr; 30(8):12630-12638. PubMed ID: 35472896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of optical absorption in thin-film solar cells through the excitation of higher-order nanoparticle plasmon modes.
    Akimov YA; Koh WS; Ostrikov K
    Opt Express; 2009 Jun; 17(12):10195-205. PubMed ID: 19506674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pronounced Linewidth Narrowing of an Aluminum Nanoparticle Plasmon Resonance by Interaction with an Aluminum Metallic Film.
    Sobhani A; Manjavacas A; Cao Y; McClain MJ; García de Abajo FJ; Nordlander P; Halas NJ
    Nano Lett; 2015 Oct; 15(10):6946-51. PubMed ID: 26383818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-Enhanced Fluorescence Biosensors: a Review.
    Bauch M; Toma K; Toma M; Zhang Q; Dostalek J
    Plasmonics; 2014; 9(4):781-799. PubMed ID: 27330521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-Chip Near-Field Thermophotovoltaic Device Integrating a Thin-Film Thermal Emitter and Photovoltaic Cell.
    Inoue T; Koyama T; Kang DD; Ikeda K; Asano T; Noda S
    Nano Lett; 2019 Jun; 19(6):3948-3952. PubMed ID: 31137936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-aligned deterministic coupling of single quantum emitter to nanofocused plasmonic modes.
    Gong SH; Kim JH; Ko YH; Rodriguez C; Shin J; Lee YH; Dang le S; Zhang X; Cho YH
    Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5280-5. PubMed ID: 25870303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metallic nanoparticle shape and size effects on aluminum oxide-induced enhancement of exciton-plasmon coupling and quantum dot emission.
    Wing WJ; Sadeghi SM; Gutha RR; Campbell Q; Mao C
    J Appl Phys; 2015 Sep; 118(12):124302. PubMed ID: 26442574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active quantum plasmonics.
    Marinica DC; Zapata M; Nordlander P; Kazansky AK; M Echenique P; Aizpurua J; Borisov AG
    Sci Adv; 2015 Dec; 1(11):e1501095. PubMed ID: 26824066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alloying: A Platform for Metallic Materials with On-Demand Optical Response.
    Rebello Sousa Dias M; Leite MS
    Acc Chem Res; 2019 Oct; 52(10):2881-2891. PubMed ID: 31305980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.