These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27244745)

  • 1. A BCI System Based on Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Farina D; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jan; 25(1):78-87. PubMed ID: 27244745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Multi-Class BCI Based on Somatosensory Imagery.
    Yao L; Mrachacz-Kersting N; Sheng X; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1508-1515. PubMed ID: 29994123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding Covert Somatosensory Attention by a BCI System Calibrated With Tactile Sensation.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1689-1695. PubMed ID: 29028186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory Stimulation Training for BCI System Based on Somatosensory Attentional Orientation.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Biomed Eng; 2019 Mar; 66(3):640-646. PubMed ID: 29993483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reducing the Calibration Time in Somatosensory BCI by Using Tactile ERD.
    Yao L; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1870-1876. PubMed ID: 35767500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multi-Class Tactile Brain-Computer Interface Based on Stimulus-Induced Oscillatory Dynamics.
    Yao L; Chen ML; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):3-10. PubMed ID: 28742045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance of Brain-Computer Interfacing Based on Tactile Selective Sensation and Motor Imagery.
    Yao L; Sheng X; Mrachacz-Kersting N; Zhu X; Farina D; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jan; 26(1):60-68. PubMed ID: 29324403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery.
    Ahn S; Ahn M; Cho H; Chan Jun S
    J Neural Eng; 2014 Dec; 11(6):066004. PubMed ID: 25307730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance Variation of a Somatosensory BCI Based on Imagined Sensation: A Large Population Study.
    Yao L; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2486-2493. PubMed ID: 35969546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion.
    Yao L; Meng J; Sheng X; Zhang D; Zhu X
    J Neural Eng; 2015 Feb; 12(1):016005. PubMed ID: 25461477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brain-computer interface with vibrotactile biofeedback for haptic information.
    Chatterjee A; Aggarwal V; Ramos A; Acharya S; Thakor NV
    J Neuroeng Rehabil; 2007 Oct; 4():40. PubMed ID: 17941986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.
    Popovich C; Staines WR
    Behav Brain Res; 2015 Mar; 281():267-75. PubMed ID: 25549856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of movie-watching on electroencephalographic responses to tactile stimulation.
    Espenhahn S; Yan T; Beltrano W; Kaur S; Godfrey K; Cortese F; Bray S; Harris AD
    Neuroimage; 2020 Oct; 220():117130. PubMed ID: 32622982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of motor imagery brain-computer interface based on anodal transcranial direct current stimulation modulation.
    Wei P; He W; Zhou Y; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):404-15. PubMed ID: 23475381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid three-class brain-computer interface system utilizing SSSEPs and transient ERPs.
    Breitwieser C; Pokorny C; Müller-Putz GR
    J Neural Eng; 2016 Dec; 13(6):066015. PubMed ID: 27788124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modality-independent reduction mechanisms of primary sensory evoked fields in a one-back task.
    Hanke D; Huonker R; Weiss T; Witte OW; Götz T
    Neuroimage; 2016 Jan; 124(Pt A):918-922. PubMed ID: 26436711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous Sensory Discrimination and Selection by a Fast Brain Switch for a High Transfer Rate Brain-Computer Interface.
    Xu R; Jiang N; Dosen S; Lin C; Mrachacz-Kersting N; Dremstrup K; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):901-10. PubMed ID: 26849869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.