These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 27245163)
21. Inclusion of mobile phone numbers into an ongoing population health survey in New South Wales, Australia: design, methods, call outcomes, costs and sample representativeness. Barr ML; van Ritten JJ; Steel DG; Thackway SV BMC Med Res Methodol; 2012 Nov; 12():177. PubMed ID: 23173849 [TBL] [Abstract][Full Text] [Related]
22. A province-based surveillance system for the risk factors of non-communicable diseases: A prototype for integration of risk factor surveillance into primary healthcare systems of developing countries. Alikhani S; Delavari A; Alaedini F; Kelishadi R; Rohbani S; Safaei A Public Health; 2009 May; 123(5):358-64. PubMed ID: 19386334 [TBL] [Abstract][Full Text] [Related]
23. Population Health Surveillance Using Mobile Phone Surveys in Low- and Middle-Income Countries: Methodology and Sample Representativeness of a Cross-sectional Survey of Live Poultry Exposure in Bangladesh. Berry I; Mangtani P; Rahman M; Khan IA; Sarkar S; Naureen T; Greer AL; Morris SK; Fisman DN; Flora MS JMIR Public Health Surveill; 2021 Nov; 7(11):e29020. PubMed ID: 34766914 [TBL] [Abstract][Full Text] [Related]
24. A dual-frame sampling methodology to address landline replacement in tobacco control research. McMillen RC; Winickoff JP; Wilson K; Tanski S; Klein JD Tob Control; 2015 Jan; 24(1):7-10. PubMed ID: 23596199 [TBL] [Abstract][Full Text] [Related]
25. Sampling and coverage issues of telephone surveys used for collecting health information in Australia: results from a face-to-face survey from 1999 to 2008. Dal Grande E; Taylor AW BMC Med Res Methodol; 2010 Aug; 10():77. PubMed ID: 20738884 [TBL] [Abstract][Full Text] [Related]
26. Differences Between Landline and Mobile Phone Users in Sexual Behavior Research. Badcock PB; Patrick K; Smith AMA; Simpson JM; Pennay D; Rissel CE; de Visser RO; Grulich AE; Richters J Arch Sex Behav; 2017 Aug; 46(6):1711-1721. PubMed ID: 27671783 [TBL] [Abstract][Full Text] [Related]
27. Assessing the feasibility and sample quality of a national random-digit dialing cellular phone survey of young adults. Gundersen DA; ZuWallack RS; Dayton J; Echeverría SE; Delnevo CD Am J Epidemiol; 2014 Jan; 179(1):39-47. PubMed ID: 24100957 [TBL] [Abstract][Full Text] [Related]
28. Public Attitudes Toward the Police: Findings From a Dual-Frame Telephone Survey. He NP; Ren L; Zhao JS; Bills MA Int J Offender Ther Comp Criminol; 2018 May; 62(7):1992-2015. PubMed ID: 28201929 [TBL] [Abstract][Full Text] [Related]
29. Noncommunicable Disease Risk Factors and Mobile Phones: A Proposed Research Agenda. Hyder AA; Wosu AC; Gibson DG; Labrique AB; Ali J; Pariyo GW J Med Internet Res; 2017 May; 19(5):e133. PubMed ID: 28476722 [TBL] [Abstract][Full Text] [Related]
30. A priority health index identifies the top six priority risk and related factors for non-communicable diseases in Brazilian cities. Simoes EJ; Bouras A; Cortez-Escalante JJ; Malta DC; Porto DL; Mokdad AH; de Moura L; Morais Neto OL BMC Public Health; 2015 May; 15():443. PubMed ID: 25924606 [TBL] [Abstract][Full Text] [Related]
32. Health Estimates Using Survey Raked-Weighting Techniques in an Australian Population Health Surveillance System. Dal Grande E; Chittleborough CR; Campostrini S; Tucker G; Taylor AW Am J Epidemiol; 2015 Sep; 182(6):544-56. PubMed ID: 26306665 [TBL] [Abstract][Full Text] [Related]
33. Moving towards a single-frame cell phone design in random digit dialing surveys: considerations from a French general population health survey. Soullier N; Legleye S; Richard JB BMC Med Res Methodol; 2022 Apr; 22(1):94. PubMed ID: 35369861 [TBL] [Abstract][Full Text] [Related]
34. Gender differences and clustering pattern of behavioural risk factors for chronic non-communicable diseases: community-based study from a developing country. Khuwaja AK; Kadir MM Chronic Illn; 2010 Sep; 6(3):163-70. PubMed ID: 20444764 [TBL] [Abstract][Full Text] [Related]
35. Mobile phones are a viable option for surveying young Australian women: a comparison of two telephone survey methods. Liu B; Brotherton JM; Shellard D; Donovan B; Saville M; Kaldor JM BMC Med Res Methodol; 2011 Nov; 11():159. PubMed ID: 22114932 [TBL] [Abstract][Full Text] [Related]
36. A study of mobile phone use among patients with noncommunicable diseases in La Paz, Bolivia: implications for mHealth research and development. Kamis K; Janevic MR; Marinec N; Jantz R; Valverde H; Piette JD Global Health; 2015 Jul; 11():30. PubMed ID: 26141528 [TBL] [Abstract][Full Text] [Related]
37. [Potential selection bias in telephone surveys: landline and mobile phones]. Garcia-Continente X; Pérez-Giménez A; López MJ; Nebot M Gac Sanit; 2014; 28(2):170-2. PubMed ID: 24300381 [TBL] [Abstract][Full Text] [Related]
38. Developing digital tools for health surveys in low- and middle-income countries: Comparing findings of two mobile phone surveys with a nationally representative in-person survey in Bangladesh. Kibria GMA; Ahmed S; Khan IA; Fernández-Niño JA; Vecino-Ortiz A; Ali J; Pariyo G; Kaufman M; Sen A; Basu S; Gibson D PLOS Glob Public Health; 2023; 3(7):e0002053. PubMed ID: 37498841 [TBL] [Abstract][Full Text] [Related]
39. Bias in telephone surveys that do not sample cell phones: uses and limits of poststratification adjustments. Call KT; Davern M; Boudreaux M; Johnson PJ; Nelson J Med Care; 2011 Apr; 49(4):355-64. PubMed ID: 21407032 [TBL] [Abstract][Full Text] [Related]
40. A cost study for mobile phone health surveys using interactive voice response for assessing risk factors of noncommunicable diseases. Vecino-Ortiz AI; Nagarajan M; Katumba KR; Akhter S; Tweheyo R; Gibson DG; Ali J; Rutebemberwa E; Khan IA; Labrique A; Pariyo GW Popul Health Metr; 2021 Jun; 19(1):32. PubMed ID: 34183013 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]