These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1057 related articles for article (PubMed ID: 27245367)

  • 1. Early Intravenous Delivery of Human Brain Stromal Cells Modulates Systemic Inflammation and Leads to Vasoprotection in Traumatic Spinal Cord Injury.
    Badner A; Vawda R; Laliberte A; Hong J; Mikhail M; Jose A; Dragas R; Fehlings M
    Stem Cells Transl Med; 2016 Aug; 5(8):991-1003. PubMed ID: 27245367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Splenic involvement in umbilical cord matrix-derived mesenchymal stromal cell-mediated effects following traumatic spinal cord injury.
    Badner A; Hacker J; Hong J; Mikhail M; Vawda R; Fehlings MG
    J Neuroinflammation; 2018 Aug; 15(1):219. PubMed ID: 30075797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse and persistent blood-spinal cord barrier disruption after contusive spinal cord injury rapidly recovers following intravenous infusion of bone marrow mesenchymal stem cells.
    Matsushita T; Lankford KL; Arroyo EJ; Sasaki M; Neyazi M; Radtke C; Kocsis JD
    Exp Neurol; 2015 May; 267():152-64. PubMed ID: 25771801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early Intravenous Infusion of Mesenchymal Stromal Cells Exerts a Tissue Source Age-Dependent Beneficial Effect on Neurovascular Integrity and Neurobehavioral Recovery After Traumatic Cervical Spinal Cord Injury.
    Vawda R; Badner A; Hong J; Mikhail M; Lakhani A; Dragas R; Xhima K; Barretto T; Librach CL; Fehlings MG
    Stem Cells Transl Med; 2019 Jul; 8(7):639-649. PubMed ID: 30912623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transplantation of human umbilical cord blood or amniotic epithelial stem cells alleviates mechanical allodynia after spinal cord injury in rats.
    Roh DH; Seo MS; Choi HS; Park SB; Han HJ; Beitz AJ; Kang KS; Lee JH
    Cell Transplant; 2013; 22(9):1577-90. PubMed ID: 23294734
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury.
    Kumagai G; Tsoulfas P; Toh S; McNiece I; Bramlett HM; Dietrich WD
    Exp Neurol; 2013 Oct; 248():369-80. PubMed ID: 23856436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment.
    Watanabe S; Uchida K; Nakajima H; Matsuo H; Sugita D; Yoshida A; Honjoh K; Johnson WE; Baba H
    Stem Cells; 2015 Jun; 33(6):1902-14. PubMed ID: 25809552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delayed administration of high dose human immunoglobulin G enhances recovery after traumatic cervical spinal cord injury by modulation of neuroinflammation and protection of the blood spinal cord barrier.
    Chio JCT; Wang J; Surendran V; Li L; Zavvarian MM; Pieczonka K; Fehlings MG
    Neurobiol Dis; 2021 Jan; 148():105187. PubMed ID: 33249350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preconditioning in lowered oxygen enhances the therapeutic potential of human umbilical mesenchymal stem cells in a rat model of spinal cord injury.
    Zhilai Z; Biling M; Sujun Q; Chao D; Benchao S; Shuai H; Shun Y; Hui Z
    Brain Res; 2016 Jul; 1642():426-435. PubMed ID: 27085204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells.
    Hu SL; Luo HS; Li JT; Xia YZ; Li L; Zhang LJ; Meng H; Cui GY; Chen Z; Wu N; Lin JK; Zhu G; Feng H
    Crit Care Med; 2010 Nov; 38(11):2181-9. PubMed ID: 20711072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intravenous infusion of mesenchymal stem cells promotes functional recovery in a model of chronic spinal cord injury.
    Morita T; Sasaki M; Kataoka-Sasaki Y; Nakazaki M; Nagahama H; Oka S; Oshigiri T; Takebayashi T; Yamashita T; Kocsis JD; Honmou O
    Neuroscience; 2016 Oct; 335():221-31. PubMed ID: 27586052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome.
    Osaka M; Honmou O; Murakami T; Nonaka T; Houkin K; Hamada H; Kocsis JD
    Brain Res; 2010 Jul; 1343():226-35. PubMed ID: 20470759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow-derived mesenchymal stem cell transplantation for chronic spinal cord injury in rats: comparative study between intralesional and intravenous transplantation.
    Kim JW; Ha KY; Molon JN; Kim YH
    Spine (Phila Pa 1976); 2013 Aug; 38(17):E1065-74. PubMed ID: 23629485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury.
    Zhou Z; Chen Y; Zhang H; Min S; Yu B; He B; Jin A
    Cytotherapy; 2013 Apr; 15(4):434-48. PubMed ID: 23376106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of human immunoglobulin G on enhancing tissue protection and neurobehavioral recovery after traumatic cervical spinal cord injury are mediated through the neurovascular unit.
    Chio JCT; Wang J; Badner A; Hong J; Surendran V; Fehlings MG
    J Neuroinflammation; 2019 Jul; 16(1):141. PubMed ID: 31288834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of functional and histological outcomes after intralesional, intracisternal, and intravenous transplantation of human bone marrow-derived mesenchymal stromal cells in a rat model of spinal cord injury.
    Shin DA; Kim JM; Kim HI; Yi S; Ha Y; Yoon DH; Kim KN
    Acta Neurochir (Wien); 2013 Oct; 155(10):1943-50. PubMed ID: 23821338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional recovery after transplantation of bone marrow-derived human mesenchymal stromal cells in a rat model of spinal cord injury.
    Pal R; Gopinath C; Rao NM; Banerjee P; Krishnamoorthy V; Venkataramana NK; Totey S
    Cytotherapy; 2010 Oct; 12(6):792-806. PubMed ID: 20524772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats.
    Shang AJ; Hong SQ; Xu Q; Wang HY; Yang Y; Wang ZF; Xu BN; Jiang XD; Xu RX
    Brain Res; 2011 May; 1391():102-13. PubMed ID: 21420392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD11d integrin blockade reduces the systemic inflammatory response syndrome after spinal cord injury.
    Bao F; Brown A; Dekaban GA; Omana V; Weaver LC
    Exp Neurol; 2011 Oct; 231(2):272-83. PubMed ID: 21784069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 53.