These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 27245428)
1. Release of bioactive peptides from polyurethane films in vitro and in vivo: Effect of polymer composition. Zhang J; Woodruff TM; Clark RJ; Martin DJ; Minchin RF Acta Biomater; 2016 Sep; 41():264-72. PubMed ID: 27245428 [TBL] [Abstract][Full Text] [Related]
2. Long-term in vitro hydrolytic stability of thermoplastic polyurethanes. Mishra A; Seethamraju K; Delaney J; Willoughby P; Faust R J Biomed Mater Res A; 2015 Dec; 103(12):3798-806. PubMed ID: 26097127 [TBL] [Abstract][Full Text] [Related]
3. Thermoplastic polyurethane-based intravaginal rings for prophylaxis and treatment of (recurrent) bacterial vaginosis. Verstraete G; Vandenbussche L; Kasmi S; Nuhn L; Brouckaert D; Van Renterghem J; Grymonpré W; Vanhoorne V; Coenye T; De Geest BG; De Beer T; Remon JP; Vervaet C Int J Pharm; 2017 Aug; 529(1-2):218-226. PubMed ID: 28663088 [TBL] [Abstract][Full Text] [Related]
4. A comparative study between melt granulation/compression and hot melt extrusion/injection molding for the manufacturing of oral sustained release thermoplastic polyurethane matrices. Verstraete G; Mertens P; Grymonpré W; Van Bockstal PJ; De Beer T; Boone MN; Van Hoorebeke L; Remon JP; Vervaet C Int J Pharm; 2016 Nov; 513(1-2):602-611. PubMed ID: 27686052 [TBL] [Abstract][Full Text] [Related]
5. Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes. Guo Q; Knight PT; Mather PT J Control Release; 2009 Aug; 137(3):224-33. PubMed ID: 19376173 [TBL] [Abstract][Full Text] [Related]
6. Hydrophilic thermoplastic polyurethanes for the manufacturing of highly dosed oral sustained release matrices via hot melt extrusion and injection molding. Verstraete G; Van Renterghem J; Van Bockstal PJ; Kasmi S; De Geest BG; De Beer T; Remon JP; Vervaet C Int J Pharm; 2016 Jun; 506(1-2):214-21. PubMed ID: 27113866 [TBL] [Abstract][Full Text] [Related]
7. Surface characterization and protein interactions of segmented polyisobutylene-based thermoplastic polyurethanes. Cozzens D; Luk A; Ojha U; Ruths M; Faust R Langmuir; 2011 Dec; 27(23):14160-8. PubMed ID: 22023013 [TBL] [Abstract][Full Text] [Related]
8. Synthesis, surface, and cell-adhesion properties of polyurethanes containing covalently grafted RGD-peptides. Lin HB; Sun W; Mosher DF; García-Echeverría C; Schaufelberger K; Lelkes PI; Cooper SL J Biomed Mater Res; 1994 Mar; 28(3):329-42. PubMed ID: 8077248 [TBL] [Abstract][Full Text] [Related]
9. Thermally induced shape memory behavior, enzymatic degradation and biocompatibility of PLA/TPU blends: "Effects of compatibilization". Dogan SK; Boyacioglu S; Kodal M; Gokce O; Ozkoc G J Mech Behav Biomed Mater; 2017 Jul; 71():349-361. PubMed ID: 28407571 [TBL] [Abstract][Full Text] [Related]
10. Thermoplastic polyurethane as matrix forming excipient using direct and ultrasound-assisted compression. Casas M; Galdón E; Ojeda DJ; Caraballo I Eur J Pharm Sci; 2019 Aug; 136():104949. PubMed ID: 31170527 [TBL] [Abstract][Full Text] [Related]
11. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
12. Lecithin doped electrospun poly(lactic acid)-thermoplastic polyurethane fibers for hepatocyte viability improvement. Liu X; Zhou L; Heng P; Xiao J; Lv J; Zhang Q; Hickey ME; Tu Q; Wang J Colloids Surf B Biointerfaces; 2019 Mar; 175():264-271. PubMed ID: 30551013 [TBL] [Abstract][Full Text] [Related]
13. Can drug release rate from implants be tailored using poly(urethane) mixtures? Lowinger MB; Su Y; Lu X; Williams RO; Zhang F Int J Pharm; 2019 Feb; 557():390-401. PubMed ID: 30529658 [TBL] [Abstract][Full Text] [Related]
14. Green TPUs from Prepolymer Mixtures Designed by Controlling the Chemical Structure of Flexible Segments. Kasprzyk P; Głowińska E; Parcheta-Szwindowska P; Rohde K; Datta J Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299058 [TBL] [Abstract][Full Text] [Related]
15. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Verstraete G; Samaro A; Grymonpré W; Vanhoorne V; Van Snick B; Boone MN; Hellemans T; Van Hoorebeke L; Remon JP; Vervaet C Int J Pharm; 2018 Jan; 536(1):318-325. PubMed ID: 29217471 [TBL] [Abstract][Full Text] [Related]
16. In vitro biocompatibility evaluation of novel urethane-siloxane co-polymers based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone). Pergal MV; Antic VV; Tovilovic G; Nestorov J; Vasiljevic-Radovic D; Djonlagic J J Biomater Sci Polym Ed; 2012; 23(13):1629-57. PubMed ID: 21888759 [TBL] [Abstract][Full Text] [Related]
18. Facile Construction of Antimicrobial Surface via One-Step Co-Deposition of Peptide Polymer and Dopamine. Wu Y; She Y; Yan Z; Chen S; Wang J; Dong A; Wang J; Liu R Macromol Biosci; 2024 Feb; 24(2):e2300327. PubMed ID: 37714144 [TBL] [Abstract][Full Text] [Related]
19. Development of electroactive nanofibers based on thermoplastic polyurethane and poly(o-ethoxyaniline) for biological applications. Cruz KF; Formaggio DM; Tada DB; Cristovan FH; Guerrini LM J Biomed Mater Res A; 2017 Feb; 105(2):601-607. PubMed ID: 27727504 [TBL] [Abstract][Full Text] [Related]
20. Practical Preparation of Infection-Resistant Biomedical Surfaces from Antimicrobial β-Peptide Polymers. Qi F; Qian Y; Shao N; Zhou R; Zhang S; Lu Z; Zhou M; Xie J; Wei T; Yu Q; Liu R ACS Appl Mater Interfaces; 2019 May; 11(21):18907-18913. PubMed ID: 31062953 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]