BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 27246681)

  • 1. Untargeted, spectral library-free analysis of data-independent acquisition proteomics data generated using Orbitrap mass spectrometers.
    Tsou CC; Tsai CF; Teo GC; Chen YJ; Nesvizhskii AI
    Proteomics; 2016 Aug; 16(15-16):2257-71. PubMed ID: 27246681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics.
    Tsou CC; Avtonomov D; Larsen B; Tucholska M; Choi H; Gingras AC; Nesvizhskii AI
    Nat Methods; 2015 Mar; 12(3):258-64, 7 p following 264. PubMed ID: 25599550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Data-Independent Acquisition for the Orbitrap Q Exactive HF: A Tutorial.
    Reubsaet L; Sweredoski MJ; Moradian A
    J Proteome Res; 2019 Mar; 18(3):803-813. PubMed ID: 30557026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing the Hidden Data Dependency of DIA with Predicted Spectral Libraries.
    Van Puyvelde B; Willems S; Gabriels R; Daled S; De Clerck L; Vande Casteele S; Staes A; Impens F; Deforce D; Martens L; Degroeve S; Dhaenens M
    Proteomics; 2020 Feb; 20(3-4):e1900306. PubMed ID: 31981311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New targeted approaches for the quantification of data-independent acquisition mass spectrometry.
    Bruderer R; Sondermann J; Tsou CC; Barrantes-Freer A; Stadelmann C; Nesvizhskii AI; Schmidt M; Reiter L; Gomez-Varela D
    Proteomics; 2017 May; 17(9):. PubMed ID: 28319648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of Cerebrospinal Fluid via Data-Independent Acquisition Mass Spectrometry.
    Barkovits K; Linden A; Galozzi S; Schilde L; Pacharra S; Mollenhauer B; Stoepel N; Steinbach S; May C; Uszkoreit J; Eisenacher M; Marcus K
    J Proteome Res; 2018 Oct; 17(10):3418-3430. PubMed ID: 30207155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-Independent Acquisition Mass Spectrometry-Based Proteomics and Software Tools: A Glimpse in 2020.
    Zhang F; Ge W; Ruan G; Cai X; Guo T
    Proteomics; 2020 Sep; 20(17-18):e1900276. PubMed ID: 32275110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico spectral libraries by deep learning facilitate data-independent acquisition proteomics.
    Yang Y; Liu X; Shen C; Lin Y; Yang P; Qiao L
    Nat Commun; 2020 Jan; 11(1):146. PubMed ID: 31919359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methods for SWATH™: Data Independent Acquisition on TripleTOF Mass Spectrometers.
    Holewinski RJ; Parker SJ; Matlock AD; Venkatraman V; Van Eyk JE
    Methods Mol Biol; 2016; 1410():265-79. PubMed ID: 26867750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid retention time alignment algorithm for SWATH-MS data.
    Wu L; Amon S; Lam H
    Proteomics; 2016 Aug; 16(15-16):2272-83. PubMed ID: 27302277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Comparative Analysis of Data Analysis Tools for Data-Independent Acquisition Mass Spectrometry.
    Zhang F; Ge W; Huang L; Li D; Liu L; Dong Z; Xu L; Ding X; Zhang C; Sun Y; A J; Gao J; Guo T
    Mol Cell Proteomics; 2023 Sep; 22(9):100623. PubMed ID: 37481071
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data Independent Acquisition analysis in ProHits 4.0.
    Liu G; Knight JD; Zhang JP; Tsou CC; Wang J; Lambert JP; Larsen B; Tyers M; Raught B; Bandeira N; Nesvizhskii AI; Choi H; Gingras AC
    J Proteomics; 2016 Oct; 149():64-68. PubMed ID: 27132685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of DIA proteomics data using MSFragger-DIA and FragPipe computational platform.
    Yu F; Teo GC; Kong AT; Fröhlich K; Li GX; Demichev V; Nesvizhskii AI
    Nat Commun; 2023 Jul; 14(1):4154. PubMed ID: 37438352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments without Spectrum Libraries.
    Pino LK; Just SC; MacCoss MJ; Searle BC
    Mol Cell Proteomics; 2020 Jul; 19(7):1088-1103. PubMed ID: 32312845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DIA-MS2pep: a library-free framework for comprehensive peptide identification from data-independent acquisition data.
    Hou J; Wang J; Yang F; Xu T
    Biophys Rep; 2022 Dec; 8(5-6):253-268. PubMed ID: 37287874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023.
    Lou R; Shui W
    Mol Cell Proteomics; 2024 Feb; 23(2):100712. PubMed ID: 38182042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DIA-SIFT: A Precursor and Product Ion Filter for Accurate Stable Isotope Data-Independent Acquisition Proteomics.
    Haynes SE; Majmudar JD; Martin BR
    Anal Chem; 2018 Aug; 90(15):8722-8726. PubMed ID: 29989796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is DIA proteomics data FAIR? Current data sharing practices, available bioinformatics infrastructure and recommendations for the future.
    Jones AR; Deutsch EW; Vizcaíno JA
    Proteomics; 2023 Apr; 23(7-8):e2200014. PubMed ID: 36074795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of DDA Library-Free Strategies for Phosphoproteomics and Ubiquitinomics Data-Independent Acquisition Data.
    Wen C; Wu X; Lin G; Yan W; Gan G; Xu X; Chen XY; Chen X; Liu X; Fu G; Zhong CQ
    J Proteome Res; 2023 Jul; 22(7):2232-2245. PubMed ID: 37256709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvements in Mass Spectrometry Assay Library Generation for Targeted Proteomics.
    Teleman J; Hauri S; Malmström J
    J Proteome Res; 2017 Jul; 16(7):2384-2392. PubMed ID: 28516777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.