These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27247187)

  • 1. Highly specific colorimetric detection of DNA oxidation biomarker using gold nanoparticle/triplex DNA conjugates.
    Gao X; Tsou YH; Garis M; Huang H; Xu X
    Nanomedicine; 2016 Oct; 12(7):2101-2105. PubMed ID: 27247187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colorimetric Biosensor for Detection of Cancer Biomarker by Au Nanoparticle-Decorated Bi
    Xiao L; Zhu A; Xu Q; Chen Y; Xu J; Weng J
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6931-6940. PubMed ID: 28164701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators.
    Chen J; Wen J; Zhuang L; Zhou S
    Nanoscale; 2016 May; 8(18):9791-7. PubMed ID: 27119550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold nanoparticle-based colorimetric assay of single-nucleotide polymorphism of triplex DNA.
    Zhu X; Liu Y; Yang J; Liang Z; Li G
    Biosens Bioelectron; 2010 May; 25(9):2135-9. PubMed ID: 20233656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria.
    Li D; Dong Y; Li B; Wu Y; Wang K; Zhang S
    Analyst; 2015 Nov; 140(22):7672-7. PubMed ID: 26446513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme-free colorimetric bioassay based on gold nanoparticle-catalyzed dye decolorization.
    Li W; Li J; Qiang W; Xu J; Xu D
    Analyst; 2013 Feb; 138(3):760-6. PubMed ID: 23223492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay.
    Wu Z; Wu ZK; Tang H; Tang LJ; Jiang JH
    Anal Chem; 2013 May; 85(9):4376-83. PubMed ID: 23544713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A universal colorimetry for nucleic acids and aptamer-specific ligands detection based on DNA hybridization amplification.
    Li S; Shang X; Liu J; Wang Y; Guo Y; You J
    Anal Biochem; 2017 Jul; 528():47-52. PubMed ID: 28442309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colorimetric sensor array for protein discrimination based on different DNA chain length-dependent gold nanoparticles aggregation.
    Wei X; Wang Y; Zhao Y; Chen Z
    Biosens Bioelectron; 2017 Nov; 97():332-337. PubMed ID: 28623815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An enzyme-free and amplified colorimetric detection strategy: assembly of gold nanoparticles through target-catalytic circuits.
    Quan K; Huang J; Yang X; Yang Y; Ying L; Wang H; Wang K
    Analyst; 2015 Feb; 140(4):1004-7. PubMed ID: 25562066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colorimetric biosensors based on DNA-nanoparticle conjugates.
    Sato K; Hosokawa K; Maeda M
    Anal Sci; 2007 Jan; 23(1):17-20. PubMed ID: 17213617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric biosensing of targeted gene sequence using dual nanoparticle platforms.
    Thavanathan J; Huang NM; Thong KL
    Int J Nanomedicine; 2015; 10():2711-22. PubMed ID: 25897217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colorimetric sensor for cysteine in human urine based on novel gold nanoparticles.
    Zhang Y; Jiang J; Li M; Gao P; Zhou Y; Zhang G; Shuang S; Dong C
    Talanta; 2016 Dec; 161():520-527. PubMed ID: 27769441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive and selective detection of cysteine using gold nanoparticles as colorimetric probes.
    Li L; Li B
    Analyst; 2009 Jul; 134(7):1361-5. PubMed ID: 19562202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the Gold Nanoparticle Colorimetric Assay by Nanoparticle Size, Concentration, and Size Combinations for Oligonucleotide Detection.
    Godakhindi VS; Kang P; Serre M; Revuru NA; Zou JM; Roner MR; Levitz R; Kahn JS; Randrianalisoa J; Qin Z
    ACS Sens; 2017 Nov; 2(11):1627-1636. PubMed ID: 28994578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates.
    Xu X; Wei M; Liu Y; Liu X; Wei W; Zhang Y; Liu S
    Biosens Bioelectron; 2017 Jan; 87():600-606. PubMed ID: 27619525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.
    Xie X; Xu W; Liu X
    Acc Chem Res; 2012 Sep; 45(9):1511-20. PubMed ID: 22786666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor.
    Liu J; Lu Y
    Anal Chem; 2004 Mar; 76(6):1627-32. PubMed ID: 15018560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Sensitive Colorimetric Cancer Cell Detection Based on Dual Signal Amplification.
    Yu T; Dai PP; Xu JJ; Chen HY
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4434-41. PubMed ID: 26824724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Programmed colorimetric logic devices based on DNA-gold nanoparticle interactions.
    Jiang Q; Wang ZG; Ding B
    Small; 2013 Apr; 9(7):1016-20. PubMed ID: 23293092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.