These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27247256)

  • 1. Association of symmetrical alkane diols with pyridine: DFT/GIAO calculation of
    Lomas JS; Joubert L; Maurel F
    Magn Reson Chem; 2016 Oct; 54(10):805-814. PubMed ID: 27247256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1H NMR spectra of alkane-1,3-diols in benzene: GIAO/DFT shift calculations.
    Lomas JS
    Magn Reson Chem; 2013 Aug; 51(8):469-81. PubMed ID: 23784999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1H NMR spectra of butane-1,4-diol and other 1,4-diols: DFT calculation of shifts and coupling constants.
    Lomas JS
    Magn Reson Chem; 2014 Mar; 52(3):87-97. PubMed ID: 24519848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 1H NMR spectra of ethane-1,2-diol and other vicinal diols in benzene: GIAO/DFT shift calculations.
    Lomas JS
    Magn Reson Chem; 2013 Jan; 51(1):32-41. PubMed ID: 23169263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. (1)H NMR spectra of alcohols in hydrogen bonding solvents: DFT/GIAO calculations of chemical shifts.
    Lomas JS
    Magn Reson Chem; 2016 Jan; 54(1):28-38. PubMed ID: 26256675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1H NMR spectra of alcohols and diols in chloroform: DFT/GIAO calculation of chemical shifts.
    Lomas JS
    Magn Reson Chem; 2014 Dec; 52(12):745-54. PubMed ID: 25199903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramolecular O-H⋯O and C-H⋯O hydrogen bond cooperativity in D-glucopyranose and D-galactopyranose-A DFT/GIAO, QTAIM/IQA, and NCI approach.
    Lomas JS
    Magn Reson Chem; 2018 Aug; 56(8):748-766. PubMed ID: 29498091
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the importance of intramolecular hydrogen bond cooperativity in d-glucose - an NMR and QTAIM approach.
    Lomas JS; Joubert L
    Magn Reson Chem; 2017 Oct; 55(10):893-901. PubMed ID: 28432857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cooperativity in alkane-1,2- and 1,3-polyols: NMR, QTAIM, and IQA study of O─H
    Lomas JS
    Magn Reson Chem; 2020 Jul; 58(7):666-684. PubMed ID: 32201981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperativity in a cycloalkane-1,2/1,3-polyol corona: Topological hydrogen bonding in 1,2-diol motifs.
    Lomas JS; Rosenberg RE; Brémond E
    Magn Reson Chem; 2020 Oct; 58(10):957-968. PubMed ID: 32529717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H chemical shifts in NMR: Part 22-Prediction of the 1H chemical shifts of alcohols, diols and inositols in solution, a conformational and solvation investigation.
    Abraham RJ; Byrne JJ; Griffiths L; Koniotou R
    Magn Reson Chem; 2005 Aug; 43(8):611-24. PubMed ID: 15986495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A molecular mechanics and ab initio prediction of the
    Abraham RJ; Ashley Cooper M
    Magn Reson Chem; 2017 Sep; 55(9):837-845. PubMed ID: 28422317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects?
    Tsipis AC; Karapetsas IN
    Magn Reson Chem; 2016 Aug; 54(8):656-64. PubMed ID: 26990565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen bonding in diols and binary diol-water systems investigated using DFT methods. II. Calculated infrared OH-stretch frequencies, force constants, and NMR chemical shifts correlate with hydrogen bond geometry and electron density topology. A reevaluation of geometrical criteria for hydrogen bonding.
    Klein RA
    J Comput Chem; 2003 Jul; 24(9):1120-31. PubMed ID: 12759911
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between NMR shifts and interaction energies in biphenyls, alkanes, aza-alkanes, and oxa-alkanes with X─H
    Lomas JS
    Magn Reson Chem; 2019 Dec; 57(12):1121-1135. PubMed ID: 31218728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the accuracy of the GIAO-DFT calculation of 15N NMR chemical shifts of the nitrogen-containing heterocycles--a gateway to better agreement with experiment at lower computational cost.
    Samultsev DO; Semenov VA; Krivdin LB
    Magn Reson Chem; 2014 May; 52(5):222-30. PubMed ID: 24573615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR spectra, GIAO and charge density calculations of five-membered aromatic heterocycles.
    Katritzky AR; Akhmedov NG; Doskocz J; Mohapatra PP; Hall CD; Güven A
    Magn Reson Chem; 2007 Jul; 45(7):532-43. PubMed ID: 17534885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An NMR, IR and theoretical investigation of (1)H chemical shifts and hydrogen bonding in phenols.
    Abraham RJ; Mobli M
    Magn Reson Chem; 2007 Oct; 45(10):865-77. PubMed ID: 17729232
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Chapyshev SV; Chernyak AV; Ushakov EN
    Magn Reson Chem; 2017 Feb; 55(2):99-105. PubMed ID: 27477821
    [No Abstract]   [Full Text] [Related]  

  • 20. General Protocol for the Accurate Prediction of Molecular
    Gao P; Zhang J; Peng Q; Zhang J; Glezakou VA
    J Chem Inf Model; 2020 Aug; 60(8):3746-3754. PubMed ID: 32602715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.