These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 27247288)
1. Prospects of Genomic Prediction in the USDA Soybean Germplasm Collection: Historical Data Creates Robust Models for Enhancing Selection of Accessions. Jarquin D; Specht J; Lorenz A G3 (Bethesda); 2016 Aug; 6(8):2329-41. PubMed ID: 27247288 [TBL] [Abstract][Full Text] [Related]
2. Harnessing Genetic Diversity in the USDA Pea Germplasm Collection Through Genomic Prediction. Bari MAA; Zheng P; Viera I; Worral H; Szwiec S; Ma Y; Main D; Coyne CJ; McGee RJ; Bandillo N Front Genet; 2021; 12():707754. PubMed ID: 35003202 [TBL] [Abstract][Full Text] [Related]
3. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: implications for germplasm conservation, evaluation, and utilization in crop improvement. Cuevas HE; Rosa-Valentin G; Hayes CM; Rooney WL; Hoffmann L BMC Genomics; 2017 Jan; 18(1):108. PubMed ID: 28125967 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Zhang J; Song Q; Cregan PB; Jiang GL Theor Appl Genet; 2016 Jan; 129(1):117-30. PubMed ID: 26518570 [TBL] [Abstract][Full Text] [Related]
5. Characterization of genetic heterogeneity within accessions in the USDA soybean germplasm collection. Mihelich NT; Mulkey SE; Stec AO; Stupar RM Plant Genome; 2020 Mar; 13(1):e20000. PubMed ID: 33016628 [TBL] [Abstract][Full Text] [Related]
6. Multi-Population Selective Genotyping to Identify Soybean [Glycine max (L.) Merr.] Seed Protein and Oil QTLs. Phansak P; Soonsuwon W; Hyten DL; Song Q; Cregan PB; Graef GL; Specht JE G3 (Bethesda); 2016 Jun; 6(6):1635-48. PubMed ID: 27172185 [TBL] [Abstract][Full Text] [Related]
7. A new decade and new data at SoyBase, the USDA-ARS soybean genetics and genomics database. Brown AV; Conners SI; Huang W; Wilkey AP; Grant D; Weeks NT; Cannon SB; Graham MA; Nelson RT Nucleic Acids Res; 2021 Jan; 49(D1):D1496-D1501. PubMed ID: 33264401 [TBL] [Abstract][Full Text] [Related]
8. Leveraging genomic prediction to scan germplasm collection for crop improvement. de Azevedo Peixoto L; Moellers TC; Zhang J; Lorenz AJ; Bhering LL; Beavis WD; Singh AK PLoS One; 2017; 12(6):e0179191. PubMed ID: 28598989 [TBL] [Abstract][Full Text] [Related]
9. The development and use of a molecular model for soybean maturity groups. Langewisch T; Lenis J; Jiang GL; Wang D; Pantalone V; Bilyeu K BMC Plant Biol; 2017 May; 17(1):91. PubMed ID: 28558691 [TBL] [Abstract][Full Text] [Related]
10. Genetic variation among 481 diverse soybean accessions, inferred from genomic re-sequencing. Valliyodan B; Brown AV; Wang J; Patil G; Liu Y; Otyama PI; Nelson RT; Vuong T; Song Q; Musket TA; Wagner R; Marri P; Reddy S; Sessions A; Wu X; Grant D; Bayer PE; Roorkiwal M; Varshney RK; Liu X; Edwards D; Xu D; Joshi T; Cannon SB; Nguyen HT Sci Data; 2021 Feb; 8(1):50. PubMed ID: 33558550 [TBL] [Abstract][Full Text] [Related]
11. Whole-genome sequencing analysis of soybean diversity across different countries and selection signature of Korean soybean accession. Cho Y; Kim JY; Kim SK; Kim SY; Kim N; Lee J; Park JL G3 (Bethesda); 2024 Aug; 14(8):. PubMed ID: 38833595 [TBL] [Abstract][Full Text] [Related]
12. Genome-wide genetic diversity is maintained through decades of soybean breeding in Canada. Bruce RW; Torkamaneh D; Grainger C; Belzile F; Eskandari M; Rajcan I Theor Appl Genet; 2019 Nov; 132(11):3089-3100. PubMed ID: 31384959 [TBL] [Abstract][Full Text] [Related]
13. Haplotype diversity underlying quantitative traits in Canadian soybean breeding germplasm. Bruce RW; Torkamaneh D; Grainger CM; Belzile F; Eskandari M; Rajcan I Theor Appl Genet; 2020 Jun; 133(6):1967-1976. PubMed ID: 32193569 [TBL] [Abstract][Full Text] [Related]
14. Genomic selection of soybean (Glycine max) for genetic improvement of yield and seed composition in a breeding context. Miller MJ; Song Q; Li Z Plant Genome; 2023 Dec; 16(4):e20384. PubMed ID: 37749946 [TBL] [Abstract][Full Text] [Related]
15. Genomic prediction contributing to a promising global strategy to turbocharge gene banks. Yu X; Li X; Guo T; Zhu C; Wu Y; Mitchell SE; Roozeboom KL; Wang D; Wang ML; Pederson GA; Tesso TT; Schnable PS; Bernardo R; Yu J Nat Plants; 2016 Oct; 2():16150. PubMed ID: 27694945 [TBL] [Abstract][Full Text] [Related]
16. Ability of Genomic Prediction to Bi-Parent-Derived Breeding Population Using Public Data for Soybean Oil and Protein Content. Li C; Yang Q; Liu B; Shi X; Liu Z; Yang C; Wang T; Xiao F; Zhang M; Shi A; Yan L Plants (Basel); 2024 Apr; 13(9):. PubMed ID: 38732474 [TBL] [Abstract][Full Text] [Related]
17. Fingerprinting Soybean Germplasm and Its Utility in Genomic Research. Song Q; Hyten DL; Jia G; Quigley CV; Fickus EW; Nelson RL; Cregan PB G3 (Bethesda); 2015 Jul; 5(10):1999-2006. PubMed ID: 26224783 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan Sorghum Core collection. Cuevas HE; Prom LK BMC Genomics; 2020 Jan; 21(1):88. PubMed ID: 31992189 [TBL] [Abstract][Full Text] [Related]
19. Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of Tobacco ringspot virus in soybean plant introductions. Chang HX; Brown PJ; Lipka AE; Domier LL; Hartman GL BMC Genomics; 2016 Feb; 17():153. PubMed ID: 26924079 [TBL] [Abstract][Full Text] [Related]
20. Construction and comparison of three reference-quality genome assemblies for soybean. Valliyodan B; Cannon SB; Bayer PE; Shu S; Brown AV; Ren L; Jenkins J; Chung CY; Chan TF; Daum CG; Plott C; Hastie A; Baruch K; Barry KW; Huang W; Patil G; Varshney RK; Hu H; Batley J; Yuan Y; Song Q; Stupar RM; Goodstein DM; Stacey G; Lam HM; Jackson SA; Schmutz J; Grimwood J; Edwards D; Nguyen HT Plant J; 2019 Dec; 100(5):1066-1082. PubMed ID: 31433882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]