These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27247317)

  • 1. CCAP and FMRFamide-like peptides accelerate the contraction rate of the antennal accessory pulsatile organs (auxiliary hearts) of mosquitoes.
    Suggs JM; Jones TH; Murphree SC; Hillyer JF
    J Exp Biol; 2016 Aug; 219(Pt 15):2388-95. PubMed ID: 27247317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemolymph circulation in insect sensory appendages: functional mechanics of antennal accessory pulsatile organs (auxiliary hearts) in the mosquito Anopheles gambiae.
    Boppana S; Hillyer JF
    J Exp Biol; 2014 Sep; 217(Pt 17):3006-14. PubMed ID: 24948635
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myotropic effects of FMRFamide containing peptides on the heart of the mosquito Anopheles gambiae.
    Hillyer JF; Estévez-Lao TY; de la Parte LE
    Gen Comp Endocrinol; 2014 Jun; 202():15-25. PubMed ID: 24747482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insect heart rhythmicity is modulated by evolutionarily conserved neuropeptides and neurotransmitters.
    Hillyer JF
    Curr Opin Insect Sci; 2018 Oct; 29():41-48. PubMed ID: 30551824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardioacceleratory function of the neurohormone CCAP in the mosquito Anopheles gambiae.
    Estévez-Lao TY; Boyce DS; Honegger HW; Hillyer JF
    J Exp Biol; 2013 Feb; 216(Pt 4):601-13. PubMed ID: 23364571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemolymph circulation in insect flight appendages: physiology of the wing heart and circulatory flow in the wings of the mosquito Anopheles gambiae.
    Chintapalli RT; Hillyer JF
    J Exp Biol; 2016 Dec; 219(Pt 24):3945-3951. PubMed ID: 27742896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of crustacean cardioactive peptide on the hearts of two Orthopteran insects, and the demonstration of a Frank-Starling-like effect.
    da Silva SR; da Silva R; Lange AB
    Gen Comp Endocrinol; 2011 Apr; 171(2):218-24. PubMed ID: 21295573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contraction of the ventral abdomen potentiates extracardiac retrograde hemolymph propulsion in the mosquito hemocoel.
    Andereck JW; King JG; Hillyer JF
    PLoS One; 2010 Sep; 5(9):e12943. PubMed ID: 20886066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural mechanics of the mosquito heart and its function in bidirectional hemolymph transport.
    Glenn JD; King JG; Hillyer JF
    J Exp Biol; 2010 Feb; 213(4):541-50. PubMed ID: 20118304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mosquito aging modulates the heart rate and the proportional directionality of heart contractions.
    Doran CR; Estévez-Lao TY; Hillyer JF
    J Insect Physiol; 2017 Aug; 101():47-56. PubMed ID: 28655496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic AMP is involved in cardioregulation by multiple neuropeptides encoded on the FMRFamide gene.
    Willoughby D; Yeoman MS; Benjamin PR
    J Exp Biol; 1999 Oct; 202(Pt 19):2595-607. PubMed ID: 10482719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deprivation of both sucrose and water reduces the mosquito heart contraction rate while increasing the expression of nitric oxide synthase.
    Ellison HE; Estévez-Lao TY; Murphree CS; Hillyer JF
    J Insect Physiol; 2015 Mar; 74():1-9. PubMed ID: 25640058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative structural and functional analysis of the larval and adult dorsal vessel and its role in hemolymph circulation in the mosquito Anopheles gambiae.
    League GP; Onuh OC; Hillyer JF
    J Exp Biol; 2015 Feb; 218(Pt 3):370-80. PubMed ID: 25524976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of aminergic and peptidergic substances on heart beat frequency in the stick insect Carausius morosus (Insecta, Phasmatodea).
    Marco HG; Katali OKH; Gäde G
    Arch Insect Biochem Physiol; 2018 Aug; 98(4):e21469. PubMed ID: 29691893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accessory pulsatile organs: evolutionary innovations in insects.
    Pass G
    Annu Rev Entomol; 2000; 45():495-518. PubMed ID: 10761587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of allatostatin and proctolin on antennal pulsatile organ and hindgut muscle in the cockroach, Diploptera punctata.
    Lange AB; Chan KK; Stay B
    Arch Insect Biochem Physiol; 1993; 24(2):79-92. PubMed ID: 7902139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique accumulation of neuropeptides in an insect: FMRFamide-related peptides in the cockroach, Periplaneta americana.
    Predel R; Neupert S; Wicher D; Gundel M; Roth S; Derst C
    Eur J Neurosci; 2004 Sep; 20(6):1499-513. PubMed ID: 15355317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptidergic control of the heart of the stick insect, Baculum extradentatum.
    Ejaz A; Lange AB
    Peptides; 2008 Feb; 29(2):214-25. PubMed ID: 18234395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distribution of neuropeptides in the antennal lobes of male Spodoptera littoralis.
    Kromann SH; Hansson BS; Ignell R
    Cell Tissue Res; 2013 Nov; 354(2):431-40. PubMed ID: 23955643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuropeptides in the antennal lobe of the yellow fever mosquito, Aedes aegypti.
    Siju KP; Reifenrath A; Scheiblich H; Neupert S; Predel R; Hansson BS; Schachtner J; Ignell R
    J Comp Neurol; 2014 Feb; 522(3):592-608. PubMed ID: 23897410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.