BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27247443)

  • 1. Practical Nuclear Medicine and Utility of Phantoms for Internal Dosimetry: XCAT Compared with Zubal.
    Fallahpoor M; Abbasi M; Kalantari F; Parach AA; Sen A
    Radiat Prot Dosimetry; 2017 Apr; 174(2):191-197. PubMed ID: 27247443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. InterDosi simulations of photon and alpha specific absorbed fractions in zubal voxelized phantom.
    El Bakkali J; Doudouh A; El Bardouni T
    Appl Radiat Isot; 2021 Oct; 176():109838. PubMed ID: 34175546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of internal dosimetry factors for three classes of adult computational phantoms with emphasis on I-131 in the thyroid.
    Lamart S; Bouville A; Simon SL; Eckerman KF; Melo D; Lee C
    Phys Med Biol; 2011 Nov; 56(22):7317-35. PubMed ID: 22040775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of respiratory motion on internal radiation dosimetry.
    Xie T; Zaidi H
    Med Phys; 2014 Nov; 41(11):112506. PubMed ID: 25370665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a nonhuman primate computational phantom for radiation dosimetry.
    Xie T; Park JS; Zhuo W; Zaidi H
    Med Phys; 2020 Feb; 47(2):736-744. PubMed ID: 31784999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The importance of BMI in dosimetry of
    Fallahpoor M; Abbasi M; Asghar Parach A; Kalantari F
    Appl Radiat Isot; 2017 Jun; 124():1-6. PubMed ID: 28284122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of the ICRP/ICRU reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons.
    Hadid L; Desbrée A; Schlattl H; Franck D; Blanchardon E; Zankl M
    Phys Med Biol; 2010 Jul; 55(13):3631-41. PubMed ID: 20526035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Paired organs-should they be treated jointly or separately in internal dosimetry?
    Parach AA; Rajabi H; Askari MA
    Med Phys; 2011 Oct; 38(10):5509-21. PubMed ID: 21992369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact on 141Ce, 144Ce, 95Zr, and 90Sr beta emitter dose coefficients of photon and electron SAFs calculated with ICRP/ICRU reference adult voxel computational phantoms.
    Li WB; Zankl M; Schlattl H; Petoussi-Henss N; Eckerman KF; Bolch WE; Oeh U; Hoeschen C
    Health Phys; 2010 Oct; 99(4):503-10. PubMed ID: 20838091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimation of electron-specific absorbed fractions with the InterDosi code using ICRP adult female voxel-based phantom.
    El Bakkali J; Bouyakhlef K; Doudouh A; El Bardouni T
    Appl Radiat Isot; 2022 Apr; 182():110145. PubMed ID: 35180525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific absorbed fractions for a revised series of the UF/NCI pediatric reference phantoms: internal electron sources.
    Schwarz BC; Godwin WJ; Wayson MB; Dewji SA; Jokisch DW; Lee C; Bolch WE
    Phys Med Biol; 2021 Jan; 66(3):035005. PubMed ID: 33142278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific Absorbed Fractions of Internal Photon and Electron Emitters in a Human Voxel-based Phantom: A Monte Carlo Study.
    Asl RG; Parach AA; Nasseri S; Momennezhad M; Zakavi SR; Sadoughi HR
    World J Nucl Med; 2017; 16(2):114-121. PubMed ID: 28553177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry: A Monte Carlo Study.
    Khazaee Moghadam M; Kamali Asl A; Geramifar P; Zaidi H
    Cancer Biother Radiopharm; 2016 Dec; 31(10):367-379. PubMed ID: 27996311
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D calculation of absorbed dose for 131I-targeted radiotherapy: a Monte Carlo study.
    Saeedzadeh E; Sarkar S; Abbaspour Tehrani-Fard A; Ay MR; Khosravi HR; Loudos G
    Radiat Prot Dosimetry; 2012 Jul; 150(3):298-305. PubMed ID: 22069233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric comparison of Monte Carlo codes (EGS4, MCNP, MCNPX) considering external and internal exposures of the Zubal phantom to electron and photon sources.
    Chiavassa S; Lemosquet A; Aubineau-Lanièce I; de Carlan L; Clairand I; Ferrer L; Bardiès M; Franck D; Zankl M
    Radiat Prot Dosimetry; 2005; 116(1-4 Pt 2):631-5. PubMed ID: 16604715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a Korean adult male computational phantom for internal dosimetry calculation.
    Park S; Lee JK; Lee C
    Radiat Prot Dosimetry; 2006; 121(3):257-64. PubMed ID: 16632585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Re-evaluation of pediatric
    Khamwan K; O'Reilly SE; Plyku D; Goodkind A; Josefsson A; Cao X; Fahey FH; Treves ST; Bolch WE; Sgouros G
    Phys Med Biol; 2018 Aug; 63(16):165012. PubMed ID: 30022768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility of reducing differences in estimated doses in nuclear medicine between a patient-specific and a reference phantom.
    Zvereva A; Schlattl H; Zankl M; Becker J; Petoussi-Henss N; Yeom YS; Kim CH; Hoeschen C; Parodi K
    Phys Med; 2017 Jul; 39():100-112. PubMed ID: 28624290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code.
    Parach AA; Rajabi H; Askari MA
    Radiat Environ Biophys; 2011 Aug; 50(3):441-50. PubMed ID: 21573984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ S values and effective doses for family members exposed to adult patients following I-131 treatment: a Monte Carlo simulation study.
    Han EY; Lee C; Mcguire L; Brown TL; Bolch WE
    Med Phys; 2013 Aug; 40(8):083901. PubMed ID: 23927361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.