BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27247803)

  • 1. Olfactory Bulb Field Potentials and Respiration in Sleep-Wake States of Mice.
    Jessberger J; Zhong W; Brankačk J; Draguhn A
    Neural Plast; 2016; 2016():4570831. PubMed ID: 27247803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nasal Respiration is Necessary for the Generation of γ Oscillation in the Olfactory Bulb.
    Zhuang L; Zhang B; Qin Z; Wang P
    Neuroscience; 2019 Feb; 398():218-230. PubMed ID: 30553790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harnessing olfactory bulb oscillations to perform fully brain-based sleep-scoring and real-time monitoring of anaesthesia depth.
    Bagur S; Lacroix MM; de Lavilléon G; Lefort JM; Geoffroy H; Benchenane K
    PLoS Biol; 2018 Nov; 16(11):e2005458. PubMed ID: 30408025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Delta-range coupling between prefrontal cortex and hippocampus supported by respiratory rhythmic input from the olfactory bulb in freely behaving rats.
    Mofleh R; Kocsis B
    Sci Rep; 2021 Apr; 11(1):8100. PubMed ID: 33854115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Odor- and state-dependent olfactory tubercle local field potential dynamics in awake rats.
    Carlson KS; Dillione MR; Wesson DW
    J Neurophysiol; 2014 May; 111(10):2109-23. PubMed ID: 24598519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Respiration-Coupled Rhythm in the Rat Hippocampus Independent of Theta and Slow Oscillations.
    Lockmann AL; Laplagne DA; Leão RN; Tort AB
    J Neurosci; 2016 May; 36(19):5338-52. PubMed ID: 27170130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-dependent olfactory processing in freely behaving mice.
    Schreck MR; Zhuang L; Janke E; Moberly AH; Bhattarai JP; Gottfried JA; Wesson DW; Ma M
    Cell Rep; 2022 Mar; 38(9):110450. PubMed ID: 35235805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hippocampal Respiration-Driven Rhythm Distinct from Theta Oscillations in Awake Mice.
    Nguyen Chi V; Müller C; Wolfenstetter T; Yanovsky Y; Draguhn A; Tort AB; Brankačk J
    J Neurosci; 2016 Jan; 36(1):162-77. PubMed ID: 26740658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo beta and gamma subthreshold oscillations in rat mitral cells: origin and gating by respiratory dynamics.
    Fourcaud-Trocmé N; Briffaud V; Thévenet M; Buonviso N; Amat C
    J Neurophysiol; 2018 Jan; 119(1):274-289. PubMed ID: 29021388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sniff rhythm-paced fast and slow gamma-oscillations in the olfactory bulb: relation to tufted and mitral cells and behavioral states.
    Manabe H; Mori K
    J Neurophysiol; 2013 Oct; 110(7):1593-9. PubMed ID: 23864376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory modulation of spontaneous subthreshold synaptic activity in olfactory bulb granule cells recorded in awake, head-fixed mice.
    Youngstrom IA; Strowbridge BW
    J Neurosci; 2015 Jun; 35(23):8758-67. PubMed ID: 26063910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reorganization of neuronal circuits of the central olfactory system during postprandial sleep.
    Yamaguchi M; Manabe H; Murata K; Mori K
    Front Neural Circuits; 2013; 7():132. PubMed ID: 23966911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the suprachiasmatic nucleus but not on behaviour rhythms.
    Ono D; Honma S; Honma K
    Eur J Neurosci; 2015 Dec; 42(12):3128-37. PubMed ID: 26489367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG gamma frequency and sleep-wake scoring in mice: comparing two types of supervised classifiers.
    Brankack J; Kukushka VI; Vyssotski AL; Draguhn A
    Brain Res; 2010 Mar; 1322():59-71. PubMed ID: 20123089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of local 5,6-dihydroxytryptamine on the rat olfactory bulb responsiveness during wakefulness and sleep.
    Gervais R; Araneda S; Pujol JF
    Electroencephalogr Clin Neurophysiol; 1984 May; 57(5):462-72. PubMed ID: 6201341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local cortical activity of distant brain areas can phase-lock to the olfactory bulb's respiratory rhythm in the freely behaving rat.
    Rojas-Líbano D; Wimmer Del Solar J; Aguilar-Rivera M; Montefusco-Siegmund R; Maldonado PE
    J Neurophysiol; 2018 Sep; 120(3):960-972. PubMed ID: 29766764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Odorant modulation of neuronal activity and local field potential in sensory-deprived olfactory bulb.
    Aylwin ML; Aguilar GA; Flores FJ; Maldonado PE
    Neuroscience; 2009 Sep; 162(4):1265-78. PubMed ID: 19481588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Selective stimulations and lesions of the rat brain nuclei as the models for research of the human sleep pathology mechanisms].
    Šaponjić J
    Glas Srp Akad Nauka Med; 2011; (51):85-97. PubMed ID: 22165729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ablation of olfactory bulb glutamatergic neurons induces depressive-like behaviors and sleep disturbances in mice.
    Yuan MY; Chen ZK; Ni J; Wang TX; Jiang SY; Dong H; Qu WM; Huang ZL; Li RX
    Psychopharmacology (Berl); 2020 Aug; 237(8):2517-2530. PubMed ID: 32445053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Respiration-gated formation of gamma and beta neural assemblies in the mammalian olfactory bulb.
    Cenier T; David F; Litaudon P; Garcia S; Amat C; Buonviso N
    Eur J Neurosci; 2009 Mar; 29(5):921-30. PubMed ID: 19291223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.