BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27247865)

  • 1. Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper.
    Gottlieb S; Wöhrl N; Schulz S; Buck V
    Springerplus; 2016; 5():568. PubMed ID: 27247865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-temperature synthesis of graphene on Cu using plasma-assisted thermal chemical vapor deposition.
    Chan SH; Chen SH; Lin WT; Li MC; Lin YC; Kuo CC
    Nanoscale Res Lett; 2013 Jun; 8(1):285. PubMed ID: 23758668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed CVD growth of graphene via process engineering.
    Yan K; Fu L; Peng H; Liu Z
    Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).
    Böke F; Giner I; Keller A; Grundmeier G; Fischer H
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17805-16. PubMed ID: 27299181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalyst-Less and Transfer-Less Synthesis of Graphene on Si(100) Using Direct Microwave Plasma Enhanced Chemical Vapor Deposition and Protective Enclosures.
    Gudaitis R; Lazauskas A; Jankauskas Š; Meškinis Š
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33321771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres.
    Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H
    ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of Carbon Dioxide into Chemical Vapor Deposited Graphene with Controllable Number of Layers via Hydrogen Plasma Pre-Treatment.
    Seekaew Y; Tammanoon N; Tuantranont A; Lomas T; Wisitsoraat A; Wongchoosuk C
    Membranes (Basel); 2022 Aug; 12(8):. PubMed ID: 36005711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microwave Plasma-Activated Chemical Vapor Deposition of Nitrogen-Doped Diamond. II: CH
    Truscott BS; Kelly MW; Potter KJ; Ashfold MN; Mankelevich YA
    J Phys Chem A; 2016 Nov; 120(43):8537-8549. PubMed ID: 27718565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of low temperature graphene synthesis in inductively coupled plasma chemical vapor deposition process with optical emission spectroscopy.
    Ma Y; Kim D; Jang H; Cho SM; Chae H
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9065-72. PubMed ID: 25971011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-dot doped, transfer-free, low-temperature, high mobility graphene using microwave plasma CVD.
    Mewada A; Vishwakarma R; Zhu R; Umeno M
    RSC Adv; 2022 Jul; 12(32):20610-20617. PubMed ID: 35919180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition.
    Das S; Drucker J
    Nanotechnology; 2017 Mar; 28(10):105601. PubMed ID: 28084218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spontaneous Nucleation and Growth of Graphene Flakes on Copper Foil in the Absence of External Carbon Precursor in Chemical Vapor Deposition.
    Khaksaran MH; Kaya II
    ACS Omega; 2018 Oct; 3(10):12575-12583. PubMed ID: 31457991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization of Copper Films on Sapphire Substrate for Large-Area Single-Crystal Graphene Growth.
    Komlenok M; Pivovarov P; Popovich A; Cheverikin V; Romshin A; Rybin M; Obraztsova E
    Nanomaterials (Basel); 2023 May; 13(10):. PubMed ID: 37242110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin Nanocrystalline Diamond Films with Silicon Vacancy Color Centers via Seeding by 2 nm Detonation Nanodiamonds.
    Stehlik S; Varga M; Stenclova P; Ondic L; Ledinsky M; Pangrac J; Vanek O; Lipov J; Kromka A; Rezek B
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38842-38853. PubMed ID: 29028298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical vapor deposition of N-doped graphene and carbon films: the role of precursors and gas phase.
    Ito Y; Christodoulou C; Nardi MV; Koch N; Sachdev H; Müllen K
    ACS Nano; 2014 Apr; 8(4):3337-46. PubMed ID: 24641621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Various Allotropes of Diamond Nanoparticles Generated in the Gas Phase during Hot Filament Chemical Vapor Deposition.
    Kim HY; Kim DS; Kim KS; Hwang NM
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33327370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films.
    Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D
    ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen-doped graphene films from chemical vapor deposition of pyridine: influence of process parameters on the electrical and optical properties.
    Capasso A; Dikonimos T; Sarto F; Tamburrano A; De Bellis G; Sarto MS; Faggio G; Malara A; Messina G; Lisi N
    Beilstein J Nanotechnol; 2015; 6():2028-38. PubMed ID: 26665073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of diamond nanoparticles captured on the floating and grounded membranes in the hot filament chemical vapor deposition process.
    Kim HY; Kim DS; Hwang NM
    RSC Adv; 2021 Jan; 11(10):5651-5657. PubMed ID: 35423076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.