BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27248146)

  • 1. Contig-Layout-Authenticator (CLA): A Combinatorial Approach to Ordering and Scaffolding of Bacterial Contigs for Comparative Genomics and Molecular Epidemiology.
    Shaik S; Kumar N; Lankapalli AK; Tiwari SK; Baddam R; Ahmed N
    PLoS One; 2016; 11(6):e0155459. PubMed ID: 27248146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-CAR: a tool of contig scaffolding using multiple references.
    Chen KT; Chen CJ; Shen HT; Liu CL; Huang SH; Lu CL
    BMC Bioinformatics; 2016 Dec; 17(Suppl 17):469. PubMed ID: 28155633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SLR: a scaffolding algorithm based on long reads and contig classification.
    Luo J; Lyu M; Chen R; Zhang X; Luo H; Yan C
    BMC Bioinformatics; 2019 Oct; 20(1):539. PubMed ID: 31666010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GRASS: a generic algorithm for scaffolding next-generation sequencing assemblies.
    Gritsenko AA; Nijkamp JF; Reinders MJ; de Ridder D
    Bioinformatics; 2012 Jun; 28(11):1429-37. PubMed ID: 22492642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tigmint: correcting assembly errors using linked reads from large molecules.
    Jackman SD; Coombe L; Chu J; Warren RL; Vandervalk BP; Yeo S; Xue Z; Mohamadi H; Bohlmann J; Jones SJM; Birol I
    BMC Bioinformatics; 2018 Oct; 19(1):393. PubMed ID: 30367597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PERGA: a paired-end read guided de novo assembler for extending contigs using SVM and look ahead approach.
    Zhu X; Leung HC; Chin FY; Yiu SM; Quan G; Liu B; Wang Y
    PLoS One; 2014; 9(12):e114253. PubMed ID: 25461763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation and Validation of Assembling Corrected PacBio Long Reads for Microbial Genome Completion via Hybrid Approaches.
    Lin HH; Liao YC
    PLoS One; 2015; 10(12):e0144305. PubMed ID: 26641475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLR-superscaffolder: a de novo scaffolding tool for synthetic long reads using a top-to-bottom scheme.
    Guo L; Xu M; Wang W; Gu S; Zhao X; Chen F; Wang O; Xu X; Seim I; Fan G; Deng L; Liu X
    BMC Bioinformatics; 2021 Mar; 22(1):158. PubMed ID: 33765921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of physical map contig-specific sequences useful for whole genome sequence scaffolding.
    Jiang Y; Ninwichian P; Liu S; Zhang J; Kucuktas H; Sun F; Kaltenboeck L; Sun L; Bao L; Liu Z
    PLoS One; 2013; 8(10):e78872. PubMed ID: 24205335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaffolding pre-assembled contigs using SSPACE.
    Boetzer M; Henkel CV; Jansen HJ; Butler D; Pirovano W
    Bioinformatics; 2011 Feb; 27(4):578-9. PubMed ID: 21149342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SOPRA: Scaffolding algorithm for paired reads via statistical optimization.
    Dayarian A; Michael TP; Sengupta AM
    BMC Bioinformatics; 2010 Jun; 11():345. PubMed ID: 20576136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Index suffix-prefix overlaps by (w, k)-minimizer to generate long contigs for reads compression.
    Liu Y; Yu Z; Dinger ME; Li J
    Bioinformatics; 2019 Jun; 35(12):2066-2074. PubMed ID: 30407482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the banana "Musa acuminata" reference sequence using NGS data and semi-automated bioinformatics methods.
    Martin G; Baurens FC; Droc G; Rouard M; Cenci A; Kilian A; Hastie A; Doležel J; Aury JM; Alberti A; Carreel F; D'Hont A
    BMC Genomics; 2016 Mar; 17():243. PubMed ID: 26984673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OMGS: Optical Map-Based Genome Scaffolding.
    Pan W; Jiang T; Lonardi S
    J Comput Biol; 2020 Apr; 27(4):519-533. PubMed ID: 31794680
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EndHiC: assemble large contigs into chromosome-level scaffolds using the Hi-C links from contig ends.
    Wang S; Wang H; Jiang F; Wang A; Liu H; Zhao H; Yang B; Xu D; Zhang Y; Fan W
    BMC Bioinformatics; 2022 Dec; 23(1):528. PubMed ID: 36482318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subset selection of high-depth next generation sequencing reads for de novo genome assembly using MapReduce framework.
    Fang CH; Chang YJ; Chung WC; Hsieh PH; Lin CY; Ho JM
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S9. PubMed ID: 26678408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-CSAR: a multiple reference-based contig scaffolder using algebraic rearrangements.
    Chen KT; Shen HT; Lu CL
    BMC Syst Biol; 2018 Dec; 12(Suppl 9):139. PubMed ID: 30598087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome assembly using Nanopore-guided long and error-free DNA reads.
    Madoui MA; Engelen S; Cruaud C; Belser C; Bertrand L; Alberti A; Lemainque A; Wincker P; Aury JM
    BMC Genomics; 2015 Apr; 16(1):327. PubMed ID: 25927464
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MeDuSa: a multi-draft based scaffolder.
    Bosi E; Donati B; Galardini M; Brunetti S; Sagot MF; Lió P; Crescenzi P; Fani R; Fondi M
    Bioinformatics; 2015 Aug; 31(15):2443-51. PubMed ID: 25810435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical scaffolding with Bambus.
    Pop M; Kosack DS; Salzberg SL
    Genome Res; 2004 Jan; 14(1):149-59. PubMed ID: 14707177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.