BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27248146)

  • 21. Aggressive assembly of pyrosequencing reads with mates.
    Miller JR; Delcher AL; Koren S; Venter E; Walenz BP; Brownley A; Johnson J; Li K; Mobarry C; Sutton G
    Bioinformatics; 2008 Dec; 24(24):2818-24. PubMed ID: 18952627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HiC-Hiker: a probabilistic model to determine contig orientation in chromosome-length scaffolds with Hi-C.
    Nakabayashi R; Morishita S
    Bioinformatics; 2020 Jul; 36(13):3966-3974. PubMed ID: 32369554
    [TBL] [Abstract][Full Text] [Related]  

  • 23. SCARPA: scaffolding reads with practical algorithms.
    Donmez N; Brudno M
    Bioinformatics; 2013 Feb; 29(4):428-34. PubMed ID: 23274213
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Whole-Genome Restriction Mapping by "Subhaploid"-Based RAD Sequencing: An Efficient and Flexible Approach for Physical Mapping and Genome Scaffolding.
    Dou J; Dou H; Mu C; Zhang L; Li Y; Wang J; Li T; Li Y; Hu X; Wang S; Bao Z
    Genetics; 2017 Jul; 206(3):1237-1250. PubMed ID: 28468906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binnacle: Using Scaffolds to Improve the Contiguity and Quality of Metagenomic Bins.
    Muralidharan HS; Shah N; Meisel JS; Pop M
    Front Microbiol; 2021; 12():638561. PubMed ID: 33717033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ILP-based maximum likelihood genome scaffolding.
    Lindsay J; Salooti H; Măndoiu I; Zelikovsky A
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S9. PubMed ID: 25253180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.
    VanBuren R; Bryant D; Edger PP; Tang H; Burgess D; Challabathula D; Spittle K; Hall R; Gu J; Lyons E; Freeling M; Bartels D; Ten Hallers B; Hastie A; Michael TP; Mockler TC
    Nature; 2015 Nov; 527(7579):508-11. PubMed ID: 26560029
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Repeat-aware evaluation of scaffolding tools.
    Mandric I; Knyazev S; Zelikovsky A
    Bioinformatics; 2018 Aug; 34(15):2530-2537. PubMed ID: 29547882
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SCOP: a novel scaffolding algorithm based on contig classification and optimization.
    Li M; Tang L; Wu FX; Pan Y; Wang J
    Bioinformatics; 2019 Apr; 35(7):1142-1150. PubMed ID: 30184046
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembling contigs in draft genomes using reversals and block-interchanges.
    Li CL; Chen KT; Lu CL
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S9. PubMed ID: 23734866
    [TBL] [Abstract][Full Text] [Related]  

  • 31. HGA: de novo genome assembly method for bacterial genomes using high coverage short sequencing reads.
    Al-Okaily AA
    BMC Genomics; 2016 Mar; 17():193. PubMed ID: 26945881
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SIS: a program to generate draft genome sequence scaffolds for prokaryotes.
    Dias Z; Dias U; Setubal JC
    BMC Bioinformatics; 2012 May; 13():96. PubMed ID: 22583530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing genome assemblies by integrating non-sequence based data.
    Heider TN; Lindsay J; Wang C; O'Neill RJ; Pask AJ
    BMC Proc; 2011 May; 5 Suppl 2(Suppl 2):S7. PubMed ID: 21554765
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Easy and accurate reconstruction of whole HIV genomes from short-read sequence data with shiver.
    Wymant C; Blanquart F; Golubchik T; Gall A; Bakker M; Bezemer D; Croucher NJ; Hall M; Hillebregt M; Ong SH; Ratmann O; Albert J; Bannert N; Fellay J; Fransen K; Gourlay A; Grabowski MK; Gunsenheimer-Bartmeyer B; Günthard HF; Kivelä P; Kouyos R; Laeyendecker O; Liitsola K; Meyer L; Porter K; Ristola M; van Sighem A; Berkhout B; Cornelissen M; Kellam P; Reiss P; Fraser C;
    Virus Evol; 2018 Jan; 4(1):vey007. PubMed ID: 29876136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MEC: Misassembly Error Correction in contigs based on distribution of paired-end reads and statistics of GC-contents.
    Wu B; Li M; Liao X; Luo J; Wu F; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Oct; ():. PubMed ID: 30334805
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and validation of an rDNA operon based primer walking strategy applicable to de novo bacterial genome finishing.
    Eastman AW; Yuan ZC
    Front Microbiol; 2014; 5():769. PubMed ID: 25653642
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High quality draft sequences for prokaryotic genomes using a mix of new sequencing technologies.
    Aury JM; Cruaud C; Barbe V; Rogier O; Mangenot S; Samson G; Poulain J; Anthouard V; Scarpelli C; Artiguenave F; Wincker P
    BMC Genomics; 2008 Dec; 9():603. PubMed ID: 19087275
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QuorUM: An Error Corrector for Illumina Reads.
    Marçais G; Yorke JA; Zimin A
    PLoS One; 2015; 10(6):e0130821. PubMed ID: 26083032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. gapFinisher: A reliable gap filling pipeline for SSPACE-LongRead scaffolder output.
    Kammonen JI; Smolander OP; Paulin L; Pereira PAB; Laine P; Koskinen P; Jernvall J; Auvinen P
    PLoS One; 2019; 14(9):e0216885. PubMed ID: 31498807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Opera: reconstructing optimal genomic scaffolds with high-throughput paired-end sequences.
    Gao S; Sung WK; Nagarajan N
    J Comput Biol; 2011 Nov; 18(11):1681-91. PubMed ID: 21929371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.