These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27248146)

  • 41. Mapping contigs using CONTIGuator.
    Galardini M; Mengoni A; Bazzicalupo M
    Methods Mol Biol; 2015; 1231():163-76. PubMed ID: 25343865
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BESST--efficient scaffolding of large fragmented assemblies.
    Sahlin K; Vezzi F; Nystedt B; Lundeberg J; Arvestad L
    BMC Bioinformatics; 2014 Aug; 15(1):281. PubMed ID: 25128196
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Graphical contig analyzer for all sequencing platforms (G4ALL): a new stand-alone tool for finishing and draft generation of bacterial genomes.
    Ramos RT; Carneiro AR; Caracciolo PH; Azevedo V; Schneider MP; Barh D; Silva A
    Bioinformation; 2013; 9(11):599-604. PubMed ID: 23888102
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facilitated sequence assembly using densely labeled optical DNA barcodes: A combinatorial auction approach.
    Dvirnas A; Pichler C; Stewart CL; Quaderi S; Nyberg LK; Müller V; Kumar Bikkarolla S; Kristiansson E; Sandegren L; Westerlund F; Ambjörnsson T
    PLoS One; 2018; 13(3):e0193900. PubMed ID: 29522539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. V-GAP: Viral genome assembly pipeline.
    Nakamura Y; Yasuike M; Nishiki I; Iwasaki Y; Fujiwara A; Kawato Y; Nakai T; Nagai S; Kobayashi T; Gojobori T; Ototake M
    Gene; 2016 Feb; 576(2 Pt 1):676-80. PubMed ID: 26475935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. BOSS: a novel scaffolding algorithm based on an optimized scaffold graph.
    Luo J; Wang J; Zhang Z; Li M; Wu FX
    Bioinformatics; 2017 Jan; 33(2):169-176. PubMed ID: 27634951
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phylogenetic comparative assembly.
    Husemann P; Stoye J
    Algorithms Mol Biol; 2010 Jan; 5():3. PubMed ID: 20047659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. CSAR-web: a web server of contig scaffolding using algebraic rearrangements.
    Chen KT; Lu CL
    Nucleic Acids Res; 2018 Jul; 46(W1):W55-W59. PubMed ID: 29733393
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enly: Improving Draft Genomes through Reads Recycling.
    Fondi M; Orlandini V; Corti G; Severgnini M; Galardini M; Pietrelli A; Fuligni F; Iacono M; Rizzi E; De Bellis G; Fani R
    J Genomics; 2014; 2():89-93. PubMed ID: 25031660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. SHI7 Is a Self-Learning Pipeline for Multipurpose Short-Read DNA Quality Control.
    Al-Ghalith GA; Hillmann B; Ang K; Shields-Cutler R; Knights D
    mSystems; 2018; 3(3):. PubMed ID: 29719872
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A whole-genome, radiation hybrid mapping resource of hexaploid wheat.
    Tiwari VK; Heesacker A; Riera-Lizarazu O; Gunn H; Wang S; Wang Y; Gu YQ; Paux E; Koo DH; Kumar A; Luo MC; Lazo G; Zemetra R; Akhunov E; Friebe B; Poland J; Gill BS; Kianian S; Leonard JM
    Plant J; 2016 Apr; 86(2):195-207. PubMed ID: 26945524
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Erratum to: An improved assembly of the loblolly pine mega-genome using long-read single-molecule sequencing.
    Zimin AV; Stevens KA; Crepeau MW; Puiu D; Wegrzyn JL; Yorke JA; Langley CH; Neale DB; Salzberg SL
    Gigascience; 2017 Oct; 6(10):1. PubMed ID: 29020755
    [TBL] [Abstract][Full Text] [Related]  

  • 53. PECC: Correcting contigs based on paired-end read distribution.
    Li M; Wu B; Yan X; Luo J; Pan Y; Wu FX; Wang J
    Comput Biol Chem; 2017 Aug; 69():178-184. PubMed ID: 28545961
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A novel scaffolding algorithm based on contig error correction and path extension.
    Li M; Tang L; Liao Z; Luo J; Wu F; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Jul; ():. PubMed ID: 30040649
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The combination of direct and paired link graphs can boost repetitive genome assembly.
    Shi W; Ji P; Zhao F
    Nucleic Acids Res; 2017 Apr; 45(6):e43. PubMed ID: 27924003
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shotgun metagenomic data of microbiomes on plastic fabrics exposed to harsh tropical environments.
    Radwan O; Ruiz ON
    Data Brief; 2020 Oct; 32():106226. PubMed ID: 32953953
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contrasting new and available reference genomes to highlight uncertainties in assemblies and areas for future improvement: an example with monodontid species.
    Bringloe TT; Parent GJ
    BMC Genomics; 2023 Nov; 24(1):693. PubMed ID: 37985969
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comprehensive review of scaffolding methods in genome assembly.
    Luo J; Wei Y; Lyu M; Wu Z; Liu X; Luo H; Yan C
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634311
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Long-read sequencing improves assembly of Trichinella genomes 10-fold, revealing substantial synteny between lineages diverged over 7 million years.
    Thompson PC; Zarlenga DS; Liu MY; Rosenthal BM
    Parasitology; 2017 Sep; 144(10):1302-1315. PubMed ID: 28583210
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combining de novo and reference-guided assembly with scaffold_builder.
    Silva GG; Dutilh BE; Matthews TD; Elkins K; Schmieder R; Dinsdale EA; Edwards RA
    Source Code Biol Med; 2013 Nov; 8(1):23. PubMed ID: 24267787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.