These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 27248698)
1. Quantitative IR microscopy and spectromics open the way to 3D digital pathology. Bobroff V; Chen HH; Delugin M; Javerzat S; Petibois C J Biophotonics; 2017 Apr; 10(4):598-606. PubMed ID: 27248698 [TBL] [Abstract][Full Text] [Related]
2. 3D Quantitative Chemical Imaging of Tissues by Spectromics. Petibois C Trends Biotechnol; 2017 Dec; 35(12):1194-1207. PubMed ID: 28893404 [TBL] [Abstract][Full Text] [Related]
3. 3D chemical imaging of the brain using quantitative IR spectro-microscopy. Ogunleke A; Recur B; Balacey H; Chen HH; Delugin M; Hwu Y; Javerzat S; Petibois C Chem Sci; 2018 Jan; 9(1):189-198. PubMed ID: 29629087 [TBL] [Abstract][Full Text] [Related]
4. Spatial resolution in infrared microspectroscopic imaging of tissues. Lasch P; Naumann D Biochim Biophys Acta; 2006 Jul; 1758(7):814-29. PubMed ID: 16875659 [TBL] [Abstract][Full Text] [Related]
5. 3D Digital Pathology for a Chemical-Functional Analysis of Glomeruli in Health and Pathology. Chen HH; Lee TT; Chen A; Hwu Y; Petibois C Anal Chem; 2018 Mar; 90(6):3811-3818. PubMed ID: 29504770 [TBL] [Abstract][Full Text] [Related]
6. The applicability of Fourier transform infrared microspectroscopy for correction against matrix effects in X-ray fluorescence microimaging of tissues. Szczerbowska-Boruchowska M; Stec P; Czyzycki M; Szczerbowski Z; Simon R; Baumbach T; Ziomber-Lisiak A Spectrochim Acta A Mol Biomol Spectrosc; 2023 May; 293():122468. PubMed ID: 36787676 [TBL] [Abstract][Full Text] [Related]
7. Real-time metabolic analysis of living cancer cells with correlated cellular spectro-microscopy. Quaroni L; Zlateva T Anal Chem; 2014 Jul; 86(14):6887-95. PubMed ID: 24914618 [TBL] [Abstract][Full Text] [Related]
9. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography. Martin MC; Dabat-Blondeau C; Unger M; Sedlmair J; Parkinson DY; Bechtel HA; Illman B; Castro JM; Keiluweit M; Buschke D; Ogle B; Nasse MJ; Hirschmugl CJ Nat Methods; 2013 Sep; 10(9):861-4. PubMed ID: 23913258 [TBL] [Abstract][Full Text] [Related]
10. Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in Fourier transform infrared microscopy images of cryo-sections of beef loin. Kohler A; Kirschner C; Oust A; Martens H Appl Spectrosc; 2005 Jun; 59(6):707-16. PubMed ID: 16053536 [TBL] [Abstract][Full Text] [Related]
11. Facing the challenge of biosample imaging by FTIR with a synchrotron radiation source. Petibois C; Piccinini M; Guidi MC; Marcelli A J Synchrotron Radiat; 2010 Jan; 17(1):1-11. PubMed ID: 20029106 [TBL] [Abstract][Full Text] [Related]
12. FTIR microscopy and confocal Raman microscopy for studying lateral drug diffusion from a semisolid formulation. Gotter B; Faubel W; Neubert RH Eur J Pharm Biopharm; 2010 Jan; 74(1):14-20. PubMed ID: 19615444 [TBL] [Abstract][Full Text] [Related]
13. All-digital histopathology by infrared-optical hybrid microscopy. Schnell M; Mittal S; Falahkheirkhah K; Mittal A; Yeh K; Kenkel S; Kajdacsy-Balla A; Carney PS; Bhargava R Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3388-3396. PubMed ID: 32015103 [TBL] [Abstract][Full Text] [Related]
14. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods. Moon I; Yi F; Lee YH; Javidi B; Boss D; Marquet P Opt Express; 2013 Dec; 21(25):30947-57. PubMed ID: 24514667 [TBL] [Abstract][Full Text] [Related]
15. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR). Blum MM; John H Drug Test Anal; 2012; 4(3-4):298-302. PubMed ID: 22113892 [TBL] [Abstract][Full Text] [Related]
16. A new sample substrate for imaging and correlating organic and trace metal composition in biological cells and tissues. Miller LM; Wang Q; Smith RJ; Zhong H; Elliott D; Warren J Anal Bioanal Chem; 2007 Mar; 387(5):1705-15. PubMed ID: 17115141 [TBL] [Abstract][Full Text] [Related]
17. Two- and Three-dimensional Mid-Infrared Chemical Imaging. Zobi F; Obst M Chimia (Aarau); 2017 Feb; 71(1-2):32-37. PubMed ID: 28259193 [TBL] [Abstract][Full Text] [Related]
18. Data-driven signal-resolving approaches of infrared spectra to explore the macroscopic and microscopic spatial distribution of organic and inorganic compounds in plant. Chen JB; Sun SQ; Zhou Q Anal Bioanal Chem; 2015 Jul; 407(19):5695-706. PubMed ID: 25976394 [TBL] [Abstract][Full Text] [Related]
19. Extracting knowledge from chemical imaging data using computational algorithms for digital cancer diagnosis. Tiwari S; Bhargava R Yale J Biol Med; 2015 Jun; 88(2):131-43. PubMed ID: 26029012 [TBL] [Abstract][Full Text] [Related]
20. Tracking infrared signatures of drugs in cancer cells by Fourier transform microspectroscopy. Bellisola G; Della Peruta M; Vezzalini M; Moratti E; Vaccari L; Birarda G; Piccinini M; Cinque G; Sorio C Analyst; 2010 Dec; 135(12):3077-86. PubMed ID: 20931110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]