BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 27248705)

  • 1. A GROMOS-Compatible Force Field for Small Organic Molecules in the Condensed Phase: The 2016H66 Parameter Set.
    Horta BA; Merz PT; Fuchs PF; Dolenc J; Riniker S; Hünenberger PH
    J Chem Theory Comput; 2016 Aug; 12(8):3825-50. PubMed ID: 27248705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Interaction Parameters for Oxygen Compounds in the GROMOS Force Field: Improved Pure-Liquid and Solvation Properties for Alcohols, Ethers, Aldehydes, Ketones, Carboxylic Acids, and Esters.
    Horta BA; Fuchs PF; van Gunsteren WF; Hünenberger PH
    J Chem Theory Comput; 2011 Apr; 7(4):1016-31. PubMed ID: 26606351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic optimization of a fragment-based force field against experimental pure-liquid properties considering large compound families: application to oxygen and nitrogen compounds.
    P Oliveira M; Hünenberger PH
    Phys Chem Chem Phys; 2021 Sep; 23(33):17774-17793. PubMed ID: 34350931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Optimization of a Fragment-Based Force Field against Experimental Pure-Liquid Properties Considering Large Compound Families: Application to Saturated Haloalkanes.
    Oliveira MP; Andrey M; Rieder SR; Kern L; Hahn DF; Riniker S; Horta BAC; Hünenberger PH
    J Chem Theory Comput; 2020 Dec; 16(12):7525-7555. PubMed ID: 33231449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies.
    Kashefolgheta S; Wang S; Acree WE; Hünenberger PH
    Phys Chem Chem Phys; 2021 Jun; 23(23):13055-13074. PubMed ID: 34105547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of the Treatment of Nonbonded Interactions on the Thermodynamic and Transport Properties of Pure Liquids Calculated Using the 2016H66 Force Field.
    Gonçalves YMH; Senac C; Fuchs PFJ; Hünenberger PH; Horta BAC
    J Chem Theory Comput; 2019 Mar; 15(3):1806-1826. PubMed ID: 30657687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the United- and All-Atom Representations of (Halo)alkanes Based on Two Condensed-Phase Force Fields Optimized against the Same Experimental Data Set.
    Oliveira MP; Gonçalves YMH; Ol Gheta SK; Rieder SR; Horta BAC; Hünenberger PH
    J Chem Theory Comput; 2022 Nov; 18(11):6757-6778. PubMed ID: 36190354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Classical Force Fields against Experimental Cross-Solvation Free Energies.
    Kashefolgheta S; Oliveira MP; Rieder SR; Horta BAC; Acree WE; Hünenberger PH
    J Chem Theory Comput; 2020 Dec; 16(12):7556-7580. PubMed ID: 33147017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Force fields optimized against experimental data for large compound families using CombiFF: Validation considering non-target properties and polyfunctional compounds.
    Oliveira MP; Hünenberger PH
    J Mol Graph Model; 2023 Jan; 118():108312. PubMed ID: 36252318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the Lennard-Jones Combination Rules on the Simulated Properties of Organic Liquids at Optimal Force-Field Parametrization.
    Oliveira MP; Hünenberger PH
    J Chem Theory Comput; 2023 Apr; 19(7):2048-2063. PubMed ID: 36920838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of phase equilibrium and hydration free energy of carboxylic acids by Monte Carlo simulations.
    Ferrando N; Gedik I; Lachet V; Pigeon L; Lugo R
    J Phys Chem B; 2013 Jun; 117(23):7123-32. PubMed ID: 23697338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6.
    Oostenbrink C; Villa A; Mark AE; van Gunsteren WF
    J Comput Chem; 2004 Oct; 25(13):1656-76. PubMed ID: 15264259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating Bilayers of Nonionic Surfactants with the GROMOS-Compatible 2016H66 Force Field.
    Senac C; Urbach W; Kurtisovski E; Hünenberger PH; Horta BAC; Taulier N; Fuchs PFJ
    Langmuir; 2017 Oct; 33(39):10225-10238. PubMed ID: 28832154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulations of PAMAM and PPI Dendrimers Using the GROMOS-Compatible 2016H66 Force Field.
    Ramos MC; Horta VAC; Horta BAC
    J Chem Inf Model; 2019 Apr; 59(4):1444-1457. PubMed ID: 30875214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A GROMOS Parameter Set for Vicinal Diether Functions: Properties of Polyethyleneoxide and Polyethyleneglycol.
    Fuchs PF; Hansen HS; Hünenberger PH; Horta BA
    J Chem Theory Comput; 2012 Oct; 8(10):3943-63. PubMed ID: 26593032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting hydration Gibbs energies of alkyl-aromatics using molecular simulation: a comparison of current force fields and the development of a new parameter set for accurate solvation data.
    Garrido NM; Jorge M; Queimada AJ; Gomes JR; Economou IG; Macedo EA
    Phys Chem Chem Phys; 2011 Oct; 13(38):17384-94. PubMed ID: 21881653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating nonpolarizable nucleic acid force fields: a systematic comparison of the nucleobases hydration free energies and chloroform-to-water partition coefficients.
    Wolf MG; Groenhof G
    J Comput Chem; 2012 Oct; 33(28):2225-32. PubMed ID: 22782700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing of the GROMOS Force-Field Parameter Set 54A8: Structural Properties of Electrolyte Solutions, Lipid Bilayers, and Proteins.
    Reif MM; Winger M; Oostenbrink C
    J Chem Theory Comput; 2013 Feb; 9(2):1247-1264. PubMed ID: 23418406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1-Octanol/Water Partition Coefficients of n-Alkanes from Molecular Simulations of Absolute Solvation Free Energies.
    Garrido NM; Queimada AJ; Jorge M; Macedo EA; Economou IG
    J Chem Theory Comput; 2009 Sep; 5(9):2436-46. PubMed ID: 26616624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a Coarse-Grained Protein Model Coupled with a Coarse-Grained Solvent Model: Solvation Free Energies of Amino Acid Side Chains.
    Han W; Wan CK; Wu YD
    J Chem Theory Comput; 2008 Nov; 4(11):1891-901. PubMed ID: 26620333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.