These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 27248842)
41. A QM/MM Derived Polarizable Water Model for Molecular Simulation. Visscher KM; Swope WC; Geerke DP Molecules; 2018 Nov; 23(12):. PubMed ID: 30501058 [TBL] [Abstract][Full Text] [Related]
42. Direct computation of parameters for accurate polarizable force fields. Verstraelen T; Vandenbrande S; Ayers PW J Chem Phys; 2014 Nov; 141(19):194114. PubMed ID: 25416881 [TBL] [Abstract][Full Text] [Related]
43. Application of Screening Functions as Cutoff-Based Alternatives to Ewald Summation in Molecular Dynamics Simulations Using Polarizable Force Fields. Vatamanu J; Borodin O; Bedrov D J Chem Theory Comput; 2018 Feb; 14(2):768-783. PubMed ID: 29294281 [TBL] [Abstract][Full Text] [Related]
44. Point charges optimally placed to represent the multipole expansion of charge distributions. Anandakrishnan R; Baker C; Izadi S; Onufriev AV PLoS One; 2013; 8(7):e67715. PubMed ID: 23861790 [TBL] [Abstract][Full Text] [Related]
45. Efficient approach to include molecular polarizations using charge and atom dipole response kernels to calculate free energy gradients in the QM/MM scheme. Asada T; Ando K; Sakurai K; Koseki S; Nagaoka M Phys Chem Chem Phys; 2015 Oct; 17(40):26955-68. PubMed ID: 26403576 [TBL] [Abstract][Full Text] [Related]
46. A coupled polarization-matrix inversion and iteration approach for accelerating the dipole convergence in a polarizable potential function. Xie W; Pu J; Gao J J Phys Chem A; 2009 Mar; 113(10):2109-16. PubMed ID: 19123850 [TBL] [Abstract][Full Text] [Related]
47. Conical Intersections in Solution with Polarizable Embedding: Integral-Exact Direct Reaction Field. Liu X; Humeniuk A; Glover WJ J Chem Theory Comput; 2022 Nov; 18(11):6826-6839. PubMed ID: 36251342 [TBL] [Abstract][Full Text] [Related]
48. Explicit polarization: a quantum mechanical framework for developing next generation force fields. Gao J; Truhlar DG; Wang Y; Mazack MJ; Löffler P; Provorse MR; Rehak P Acc Chem Res; 2014 Sep; 47(9):2837-45. PubMed ID: 25098651 [TBL] [Abstract][Full Text] [Related]
49. An Iterative Fragment Scheme for the ACKS2 Electronic Polarization Model: Application to Molecular Dimers and Chains. Gütlein P; Blumberger J; Oberhofer H J Chem Theory Comput; 2020 Sep; 16(9):5723-5735. PubMed ID: 32701273 [TBL] [Abstract][Full Text] [Related]
50. Recent advances toward a general purpose linear-scaling quantum force field. Giese TJ; Huang M; Chen H; York DM Acc Chem Res; 2014 Sep; 47(9):2812-20. PubMed ID: 24937206 [TBL] [Abstract][Full Text] [Related]
51. Electrostatics of proteins in dielectric solvent continua. I. An accurate and efficient reaction field description. Bauer S; Mathias G; Tavan P J Chem Phys; 2014 Mar; 140(10):104102. PubMed ID: 24628147 [TBL] [Abstract][Full Text] [Related]
52. Accelerating QM/MM free energy calculations: representing the surroundings by an updated mean charge distribution. Rosta E; Haranczyk M; Chu ZT; Warshel A J Phys Chem B; 2008 May; 112(18):5680-92. PubMed ID: 18412414 [TBL] [Abstract][Full Text] [Related]
53. Polarizable six-point water models from computational and empirical optimization. Tröster P; Lorenzen K; Tavan P J Phys Chem B; 2014 Feb; 118(6):1589-602. PubMed ID: 24437570 [TBL] [Abstract][Full Text] [Related]
54. Is an Inductive Effect Explicit Account Required for Atomic Charges Aimed at Use within the Force Fields? Shaimardanov AR; Shulga DA; Palyulin VA J Phys Chem A; 2022 Sep; 126(36):6278-6294. PubMed ID: 36054931 [TBL] [Abstract][Full Text] [Related]
55. Revisiting the hexane-water interface via molecular dynamics simulations using nonadditive alkane-water potentials. Patel SA; Brooks CL J Chem Phys; 2006 May; 124(20):204706. PubMed ID: 16774363 [TBL] [Abstract][Full Text] [Related]
56. CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methyl-aldopentofuranosides. Jana M; MacKerell AD J Phys Chem B; 2015 Jun; 119(25):7846-59. PubMed ID: 26018564 [TBL] [Abstract][Full Text] [Related]
57. A generally applicable atomic-charge dependent London dispersion correction. Caldeweyher E; Ehlert S; Hansen A; Neugebauer H; Spicher S; Bannwarth C; Grimme S J Chem Phys; 2019 Apr; 150(15):154122. PubMed ID: 31005066 [TBL] [Abstract][Full Text] [Related]
58. Deep Neural Network Model to Predict the Electrostatic Parameters in the Polarizable Classical Drude Oscillator Force Field. Kumar A; Pandey P; Chatterjee P; MacKerell AD J Chem Theory Comput; 2022 Mar; 18(3):1711-1725. PubMed ID: 35148088 [TBL] [Abstract][Full Text] [Related]
59. Extending electrostatics of dielectric spheres to arbitrary charge distributions with applications to biosystems. Doerr TP; Obolensky OI; Yu YK Phys Rev E; 2017 Dec; 96(6-1):062414. PubMed ID: 29347333 [TBL] [Abstract][Full Text] [Related]
60. A charge-dipole model for the static polarizability of nanostructures including aliphatic, olephinic, and aromatic systems. Mayer A; Astrand PO J Phys Chem A; 2008 Feb; 112(6):1277-85. PubMed ID: 18198848 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]