These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 27249374)
1. Localization of Acrolein-Lysine Adduct in Fibrovascular Tissues of Proliferative Diabetic Retinopathy. Dong Y; Noda K; Murata M; Yoshida S; Saito W; Kanda A; Ishida S Curr Eye Res; 2017 Jan; 42(1):111-117. PubMed ID: 27249374 [TBL] [Abstract][Full Text] [Related]
2. Soluble Vascular Adhesion Protein-1 Mediates Spermine Oxidation as Semicarbazide-Sensitive Amine Oxidase: Possible Role in Proliferative Diabetic Retinopathy. Murata M; Noda K; Kawasaki A; Yoshida S; Dong Y; Saito M; Dong Z; Ando R; Mori S; Saito W; Kanda A; Ishida S Curr Eye Res; 2017 Dec; 42(12):1674-1683. PubMed ID: 28937866 [TBL] [Abstract][Full Text] [Related]
3. Tenascin-C promotes angiogenesis in fibrovascular membranes in eyes with proliferative diabetic retinopathy. Kobayashi Y; Yoshida S; Zhou Y; Nakama T; Ishikawa K; Arima M; Nakao S; Sassa Y; Takeda A; Hisatomi T; Ikeda Y; Matsuda A; Sonoda KH; Ishibashi T Mol Vis; 2016; 22():436-45. PubMed ID: 27186070 [TBL] [Abstract][Full Text] [Related]
4. Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Müller glia dysfunction and death in diabetic retinopathy. Yong PH; Zong H; Medina RJ; Limb GA; Uchida K; Stitt AW; Curtis TM Mol Vis; 2010 Dec; 16():2524-38. PubMed ID: 21151599 [TBL] [Abstract][Full Text] [Related]
5. Müller glial dysfunction during diabetic retinopathy in rats is reduced by the acrolein-scavenging drug, 2-hydrazino-4,6-dimethylpyrimidine. McDowell RE; Barabas P; Augustine J; Chevallier O; McCarron P; Chen M; McGeown JG; Curtis TM Diabetologia; 2018 Dec; 61(12):2654-2667. PubMed ID: 30112688 [TBL] [Abstract][Full Text] [Related]
6. Coexpression of VEGF receptors VEGF-R2 and neuropilin-1 in proliferative diabetic retinopathy. Ishida S; Shinoda K; Kawashima S; Oguchi Y; Okada Y; Ikeda E Invest Ophthalmol Vis Sci; 2000 Jun; 41(7):1649-56. PubMed ID: 10845581 [TBL] [Abstract][Full Text] [Related]
7. Regulation of Spermine Oxidase through Hypoxia-Inducible Factor-1α Signaling in Retinal Glial Cells under Hypoxic Conditions. Wu D; Noda K; Murata M; Liu Y; Kanda A; Ishida S Invest Ophthalmol Vis Sci; 2020 Jun; 61(6):52. PubMed ID: 32579679 [TBL] [Abstract][Full Text] [Related]
8. Characterization of cells from patient-derived fibrovascular membranes in proliferative diabetic retinopathy. Kim LA; Wong LL; Amarnani DS; Bigger-Allen AA; Hu Y; Marko CK; Eliott D; Shah VA; McGuone D; Stemmer-Rachamimov AO; Gai X; D'Amore PA; Arboleda-Velasquez JF Mol Vis; 2015; 21():673-87. PubMed ID: 26120272 [TBL] [Abstract][Full Text] [Related]
9. Preoperative intravitreal bevacizumab use as an adjuvant to diabetic vitrectomy: histopathologic findings and clinical implications. El-Sabagh HA; Abdelghaffar W; Labib AM; Mateo C; Hashem TM; Al-Tamimi DM; Selim AA Ophthalmology; 2011 Apr; 118(4):636-41. PubMed ID: 21055812 [TBL] [Abstract][Full Text] [Related]
10. Histology of fibrovascular membranes of proliferative diabetic retinopathy after intravitreal injection of bevacizumab. Kubota T; Morita H; Tou N; Nitta N; Tawara A; Satoh H; Shimajiri S Retina; 2010 Mar; 30(3):468-72. PubMed ID: 19952991 [TBL] [Abstract][Full Text] [Related]
11. Unsaturated Aldehyde Acrolein Promotes Retinal Glial Cell Migration. Murata M; Noda K; Yoshida S; Saito M; Fujiya A; Kanda A; Ishida S Invest Ophthalmol Vis Sci; 2019 Oct; 60(13):4425-4435. PubMed ID: 31652327 [TBL] [Abstract][Full Text] [Related]
12. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Amin RH; Frank RN; Kennedy A; Eliott D; Puklin JE; Abrams GW Invest Ophthalmol Vis Sci; 1997 Jan; 38(1):36-47. PubMed ID: 9008628 [TBL] [Abstract][Full Text] [Related]
14. Indications of lymphatic endothelial differentiation and endothelial progenitor cell activation in the pathology of proliferative diabetic retinopathy. Loukovaara S; Gucciardo E; Repo P; Vihinen H; Lohi J; Jokitalo E; Salven P; Lehti K Acta Ophthalmol; 2015 Sep; 93(6):512-23. PubMed ID: 25899460 [TBL] [Abstract][Full Text] [Related]
15. Association of HMGB1 with oxidative stress markers and regulators in PDR. Abu El-Asrar AM; Alam K; Garcia-Ramirez M; Ahmad A; Siddiquei MM; Mohammad G; Mousa A; De Hertogh G; Opdenakker G; Simó R Mol Vis; 2017; 23():853-871. PubMed ID: 29259392 [TBL] [Abstract][Full Text] [Related]
16. Intraocular expression of thymosin β4 in proliferative diabetic retinopathy. Wang JY; Lu Q; Tao Y; Jiang YR; Jonas JB Acta Ophthalmol; 2011 Aug; 89(5):e396-403. PubMed ID: 21332672 [TBL] [Abstract][Full Text] [Related]
17. Effects of tenascin-C on normal and diabetic retinal endothelial cells in culture. Castellon R; Caballero S; Hamdi HK; Atilano SR; Aoki AM; Tarnuzzer RW; Kenney MC; Grant MB; Ljubimov AV Invest Ophthalmol Vis Sci; 2002 Aug; 43(8):2758-66. PubMed ID: 12147613 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of N (epsilon)-(3-formyl-3,4-dehydropiperidino)lysine as a novel biomarker for the severity of diabetic retinopathy. Zhang X; Lai Y; McCance DR; Uchida K; McDonald DM; Gardiner TA; Stitt AW; Curtis TM Diabetologia; 2008 Sep; 51(9):1723-30. PubMed ID: 18587559 [TBL] [Abstract][Full Text] [Related]
19. Molecular analysis of blood-retinal barrier loss in the Akimba mouse, a model of advanced diabetic retinopathy. Wisniewska-Kruk J; Klaassen I; Vogels IM; Magno AL; Lai CM; Van Noorden CJ; Schlingemann RO; Rakoczy EP Exp Eye Res; 2014 May; 122():123-31. PubMed ID: 24703908 [TBL] [Abstract][Full Text] [Related]
20. Proteolytic cleavage of vascular adhesion protein-1 induced by vascular endothelial growth factor in retinal capillary endothelial cells. Yoshida S; Murata M; Noda K; Matsuda T; Saito M; Saito W; Kanda A; Ishida S Jpn J Ophthalmol; 2018 Mar; 62(2):256-264. PubMed ID: 29392528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]