These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 2724941)

  • 1. Trabecular structure compared to stress trajectories in the proximal femur and the calcaneus.
    Vander Sloten J; Van der Perre G
    J Biomed Eng; 1989 May; 11(3):203-8. PubMed ID: 2724941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the trabecular architecture and the isostatic stress flow in the human calcaneus.
    Gefen A; Seliktar R
    Med Eng Phys; 2004 Mar; 26(2):119-29. PubMed ID: 15036179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A new method to reconstruct the spatial structure of human proximal femur and establishment of the finite element model].
    Ma X; Fu X; Ma J; Zhao Y; Wang T; Wang Z; Zhang Y; Dong B; Yang Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2011 Feb; 28(1):71-5. PubMed ID: 21485187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mathematical analysis of trabecular 'trajectories' in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur.
    Skedros JG; Baucom SL
    J Theor Biol; 2007 Jan; 244(1):15-45. PubMed ID: 16949618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography.
    Follet H; Peyrin F; Vidal-Salle E; Bonnassie A; Rumelhart C; Meunier PJ
    J Biomech; 2007; 40(10):2174-83. PubMed ID: 17196599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropy of the elastic modulus of trabecular bone specimens from different anatomical locations.
    Augat P; Link T; Lang TF; Lin JC; Majumdar S; Genant HK
    Med Eng Phys; 1998 Mar; 20(2):124-31. PubMed ID: 9679231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical properties.
    Majumdar S; Kothari M; Augat P; Newitt DC; Link TM; Lin JC; Lang T; Lu Y; Genant HK
    Bone; 1998 May; 22(5):445-54. PubMed ID: 9600777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff's law.
    Tsubota K; Suzuki Y; Yamada T; Hojo M; Makinouchi A; Adachi T
    J Biomech; 2009 May; 42(8):1088-94. PubMed ID: 19403138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional micro-level computational study of Wolff's law via trabecular bone remodeling in the human proximal femur using design space topology optimization.
    Boyle C; Kim IY
    J Biomech; 2011 Mar; 44(5):935-42. PubMed ID: 21159341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational simulation of simultaneous cortical and trabecular bone change in human proximal femur during bone remodeling.
    Jang IG; Kim IY
    J Biomech; 2010 Jan; 43(2):294-301. PubMed ID: 19762027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The forces acting on the human calcaneus.
    Yettram AL; Camilleri NN
    J Biomed Eng; 1993 Jan; 15(1):46-50. PubMed ID: 8419680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Numerical treatment of bone as anisotropic material].
    Besdo D; Händel M
    Biomed Tech (Berl); 1994 Nov; 39(11):293-8. PubMed ID: 7833449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3-D femoral stress analysis using CT scans and p-version FEM.
    Basu PK; Beall AG; Simmons DJ; Vannier M
    Biomater Med Devices Artif Organs; 1985-1986; 13(3-4):163-86. PubMed ID: 3841817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific finite element simulation of the human femur considering inhomogeneous material properties: a straightforward method and convergence study.
    Hölzer A; Schröder C; Woiczinski M; Sadoghi P; Scharpf A; Heimkes B; Jansson V
    Comput Methods Programs Biomed; 2013 Apr; 110(1):82-8. PubMed ID: 23084242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite Element Analysis of Foot and Ankle Impact Injury: Risk Evaluation of Calcaneus and Talus Fracture.
    Wong DW; Niu W; Wang Y; Zhang M
    PLoS One; 2016; 11(4):e0154435. PubMed ID: 27119740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions.
    Van Rietbergen B; Müller R; Ulrich D; Rüegsegger P; Huiskes R
    J Biomech; 1999 Apr; 32(4):443-51. PubMed ID: 10213036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The artiodactyl calcaneus as a potential 'control bone' cautions against simple interpretations of trabecular bone adaptation in the anthropoid femoral neck.
    Sinclair KD; Farnsworth RW; Pham TX; Knight AN; Bloebaum RD; Skedros JG
    J Hum Evol; 2013 May; 64(5):366-79. PubMed ID: 23481347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Automatic generation of 3-D finite element codes of the human femur].
    Lengsfeld M; Kaminsky J; Merz B; Franke RP
    Biomed Tech (Berl); 1994 May; 39(5):117-22. PubMed ID: 8049341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fuzzy logic structure analysis of trabecular bone of the calcaneus to estimate proximal femur fracture load and discriminate subjects with and without vertebral fractures using high-resolution magnetic resonance imaging at 1.5 T and 3 T.
    Patel PV; Eckstein F; Carballido-Gamio J; Phan C; Matsuura M; Lochmüller EM; Majumdar S; Link TM
    Calcif Tissue Int; 2007 Oct; 81(4):294-304. PubMed ID: 17705050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.