These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 27249534)

  • 1. Nanoparticle Surface Affinity as a Predictor of Trophic Transfer.
    Geitner NK; Marinakos SM; Guo C; O'Brien N; Wiesner MR
    Environ Sci Technol; 2016 Jul; 50(13):6663-9. PubMed ID: 27249534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake and toxicity of CuO nanoparticles to Daphnia magna varies between indirect dietary and direct waterborne exposures.
    Wu F; Bortvedt A; Harper BJ; Crandon LE; Harper SL
    Aquat Toxicol; 2017 Sep; 190():78-86. PubMed ID: 28697458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toxicokinetic modeling of octylphenol bioconcentration in Chlorella vulgaris and its trophic transfer to Daphnia magna.
    Achar JC; Kim DY; Kwon JH; Jung J
    Ecotoxicol Environ Saf; 2020 May; 194():110379. PubMed ID: 32143104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trophic transfer of TiO(2) nanoparticles from Daphnia to zebrafish in a simplified freshwater food chain.
    Zhu X; Wang J; Zhang X; Chang Y; Chen Y
    Chemosphere; 2010 May; 79(9):928-33. PubMed ID: 20371096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daphnia inhibits the emergence of spatial pattern in a simple consumer-resource system.
    Betini GS; Avgar T; McCann KS; Fryxell JM
    Ecology; 2017 Apr; 98(4):1163-1170. PubMed ID: 28130817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing the toxicity on [C3mim][Tf2N] to aquatic organisms of different trophic levels.
    Ventura SP; Gonçalves AM; Gonçalves F; Coutinho JA
    Aquat Toxicol; 2010 Mar; 96(4):290-7. PubMed ID: 20018392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna.
    Lee WM; Yoon SJ; Shin YJ; An YJ
    Environ Pollut; 2015 Jun; 201():10-6. PubMed ID: 25756227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna.
    Campos B; Rivetti C; Rosenkranz P; Navas JM; Barata C
    Aquat Toxicol; 2013 Apr; 130-131():174-83. PubMed ID: 23416410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freeze-dried Chlorella vulgaris as food for Daphnia magna Straus in toxicity testing.
    Naylor C; Bradley MC; Calow P
    Ecotoxicol Environ Saf; 1993 Apr; 25(2):166-72. PubMed ID: 7682500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake, retention and internalization of quantum dots in Daphnia is influenced by particle surface functionalization.
    Feswick A; Griffitt RJ; Siebein K; Barber DS
    Aquat Toxicol; 2013 Apr; 130-131():210-8. PubMed ID: 23419536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring methods for compositional and particle size analysis of noble metal nanoparticles in Daphnia magna.
    Krystek P; Brandsma S; Leonards P; de Boer J
    Talanta; 2016 Jan; 147():289-95. PubMed ID: 26592609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viral Transfer and Inactivation through Zooplankton Trophic Interactions.
    Ismail NS; Olive M; Fernandez-Cassi X; Bachmann V; Kohn T
    Environ Sci Technol; 2020 Aug; 54(15):9418-9426. PubMed ID: 32662638
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing lethal and sub-lethal effects of trichlorfon on different trophic levels.
    Coelho S; Oliveira R; Pereira S; Musso C; Domingues I; Bhujel RC; Soares AM; Nogueira AJ
    Aquat Toxicol; 2011 Jun; 103(3-4):191-8. PubMed ID: 21473847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation and elimination of aqueous and dietary silver in Daphnia magna.
    Lam IK; Wang WX
    Chemosphere; 2006 Jun; 64(1):26-35. PubMed ID: 16442147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of aged TiO2 nanomaterial from sunscreen on Daphnia magna exposed by dietary route.
    Fouqueray M; Dufils B; Vollat B; Chaurand P; Botta C; Abacci K; Labille J; Rose J; Garric J
    Environ Pollut; 2012 Apr; 163():55-61. PubMed ID: 22325431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of liposomes to differentiate between the effects of nickel accumulation and altered food quality in Daphnia magna exposed to dietary nickel.
    Evens R; De Schamphelaere KA; Balcaen L; Wang Y; De Roy K; Resano M; Flórez M; Boon N; Vanhaecke F; Janssen CR
    Aquat Toxicol; 2012 Mar; 109():80-9. PubMed ID: 22210497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can overwintering versus diapausing strategy in Daphnia determine match-mismatch events in zooplankton-algae interactions?
    de Senerpont Domis LN; Mooij WM; Hülsmann S; van Nes EH; Scheffer M
    Oecologia; 2007 Jan; 150(4):682-98. PubMed ID: 17024385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity of TiO(2) nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure.
    Clément L; Hurel C; Marmier N
    Chemosphere; 2013 Jan; 90(3):1083-90. PubMed ID: 23062945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laboratory evaluation of the toxicity of Perfluorooctane Sulfonate (PFOS) on Selenastrum capricornutum, Chlorella vulgaris, Lemna gibba, Daphnia magna, and Daphnia pulicaria.
    Boudreau TM; Sibley PK; Mabury SA; Muir DG; Solomon KR
    Arch Environ Contam Toxicol; 2003 Apr; 44(3):307-13. PubMed ID: 12712289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic multipathway modeling of Cd bioaccumulation in Daphnia magna using waterborne and dietborne exposures.
    Goulet RR; Krack S; Doyle PJ; Hare L; Vigneault B; McGeer JC
    Aquat Toxicol; 2007 Feb; 81(2):117-25. PubMed ID: 17173986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.