These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 27249822)

  • 1. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
    Li P; Wang Y; Tian Y; Zhou TS; Li JS
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):706-714. PubMed ID: 27249822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective diagnosis of ADHD using IMUs.
    O'Mahony N; Florentino-Liano B; Carballo JJ; Baca-García E; Rodríguez AA
    Med Eng Phys; 2014 Jul; 36(7):922-6. PubMed ID: 24657100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing.
    Artetxe A; Beristain A; Kabongo L
    Stud Health Technol Inform; 2014; 207():1-10. PubMed ID: 25488205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-accelerometer-based daily physical activity classification.
    Long X; Yin B; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Complex Activity Representation and Recognition Using Topic Model and Classifier Level Fusion.
    Liangying Peng ; Ling Chen ; Xiaojie Wu ; Haodong Guo ; Gencai Chen
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1369-1379. PubMed ID: 28113223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lightweight hierarchical activity recognition framework using smartphone sensors.
    Han M; Bang JH; Nugent C; McClean S; Lee S
    Sensors (Basel); 2014 Sep; 14(9):16181-95. PubMed ID: 25184486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone-based recognition of states and state changes in bipolar disorder patients.
    Grünerbl A; Muaremi A; Osmani V; Bahle G; Ohler S; Tröster G; Mayora O; Haring C; Lukowicz P
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):140-8. PubMed ID: 25073181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.
    Ghose S; Mitra J; Karunanithi M; Dowling J
    Stud Health Technol Inform; 2015; 214():62-7. PubMed ID: 26210419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic activity classification based on automatic adaptation of postural orientation.
    Song SK; Jang J; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6175-8. PubMed ID: 19964894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.
    Khan AM; Siddiqi MH; Lee SW
    Sensors (Basel); 2013 Sep; 13(10):13099-122. PubMed ID: 24084108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards remote evaluation of movement disorders via smartphones.
    Kostikis N; Hristu-Varsakelis D; Arnaoutoglou M; Kotsavasiloglou C; Baloyiannis S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5240-3. PubMed ID: 22255519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity classification using realistic data from wearable sensors.
    Pärkkä J; Ermes M; Korpipää P; Mäntyjärvi J; Peltola J; Korhonen I
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):119-28. PubMed ID: 16445257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Bayesian networks for context-aware fall risk assessment.
    Koshmak G; Linden M; Loutfi A
    Sensors (Basel); 2014 May; 14(5):9330-48. PubMed ID: 24859032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors.
    Zemp R; Tanadini M; Plüss S; Schnüriger K; Singh NB; Taylor WR; Lorenzetti S
    Biomed Res Int; 2016; 2016():5978489. PubMed ID: 27868066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of photoplethysmography as a method to detect heart rate during rest and exercise.
    Spierer DK; Rosen Z; Litman LL; Fujii K
    J Med Eng Technol; 2015; 39(5):264-71. PubMed ID: 26112379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving compliance in remote healthcare systems through smartphone battery optimization.
    Alshurafa N; Eastwood JA; Nyamathi S; Liu JJ; Xu W; Ghasemzadeh H; Pourhomayoun M; Sarrafzadeh M
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):57-63. PubMed ID: 24951710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable Embedded System for Electrocardiogram Acquisition.
    Kay MS; Iaione F
    Stud Health Technol Inform; 2015; 216():98-102. PubMed ID: 26262018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.