BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 27249822)

  • 1. An Automatic User-Adapted Physical Activity Classification Method Using Smartphones.
    Li P; Wang Y; Tian Y; Zhou TS; Li JS
    IEEE Trans Biomed Eng; 2017 Mar; 64(3):706-714. PubMed ID: 27249822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Objective diagnosis of ADHD using IMUs.
    O'Mahony N; Florentino-Liano B; Carballo JJ; Baca-García E; Rodríguez AA
    Med Eng Phys; 2014 Jul; 36(7):922-6. PubMed ID: 24657100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing.
    Artetxe A; Beristain A; Kabongo L
    Stud Health Technol Inform; 2014; 207():1-10. PubMed ID: 25488205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-accelerometer-based daily physical activity classification.
    Long X; Yin B; Aarts RM
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6107-10. PubMed ID: 19965261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Complex Activity Representation and Recognition Using Topic Model and Classifier Level Fusion.
    Liangying Peng ; Ling Chen ; Xiaojie Wu ; Haodong Guo ; Gencai Chen
    IEEE Trans Biomed Eng; 2017 Jun; 64(6):1369-1379. PubMed ID: 28113223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lightweight hierarchical activity recognition framework using smartphone sensors.
    Han M; Bang JH; Nugent C; McClean S; Lee S
    Sensors (Basel); 2014 Sep; 14(9):16181-95. PubMed ID: 25184486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone-based recognition of states and state changes in bipolar disorder patients.
    Grünerbl A; Muaremi A; Osmani V; Bahle G; Ohler S; Tröster G; Mayora O; Haring C; Lukowicz P
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):140-8. PubMed ID: 25073181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Activity Recognition from Smart-Phone Sensor Data using a Multi-Class Ensemble Learning in Home Monitoring.
    Ghose S; Mitra J; Karunanithi M; Dowling J
    Stud Health Technol Inform; 2015; 214():62-7. PubMed ID: 26210419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic activity classification based on automatic adaptation of postural orientation.
    Song SK; Jang J; Park SJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6175-8. PubMed ID: 19964894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploratory data analysis of acceleration signals to select light-weight and accurate features for real-time activity recognition on smartphones.
    Khan AM; Siddiqi MH; Lee SW
    Sensors (Basel); 2013 Sep; 13(10):13099-122. PubMed ID: 24084108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards remote evaluation of movement disorders via smartphones.
    Kostikis N; Hristu-Varsakelis D; Arnaoutoglou M; Kotsavasiloglou C; Baloyiannis S
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5240-3. PubMed ID: 22255519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of accelerometer orientation for activity recognition.
    Friedman A; Hajj Chehade N; Chien C; Pottie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2076-9. PubMed ID: 23366329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity classification using realistic data from wearable sensors.
    Pärkkä J; Ermes M; Korpipää P; Mäntyjärvi J; Peltola J; Korhonen I
    IEEE Trans Inf Technol Biomed; 2006 Jan; 10(1):119-28. PubMed ID: 16445257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Bayesian networks for context-aware fall risk assessment.
    Koshmak G; Linden M; Loutfi A
    Sensors (Basel); 2014 May; 14(5):9330-48. PubMed ID: 24859032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors.
    Zemp R; Tanadini M; Plüss S; Schnüriger K; Singh NB; Taylor WR; Lorenzetti S
    Biomed Res Int; 2016; 2016():5978489. PubMed ID: 27868066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of photoplethysmography as a method to detect heart rate during rest and exercise.
    Spierer DK; Rosen Z; Litman LL; Fujii K
    J Med Eng Technol; 2015; 39(5):264-71. PubMed ID: 26112379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Where to wear accelerometers to measure physical activity in people?
    Thaler-Kall K; Tusker F; Hermsdörfer J; Gorzelniak L; Horsch A
    Stud Health Technol Inform; 2013; 192():1045. PubMed ID: 23920819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Registration and Analysis of Acceleration Data to Recognize Physical Activity.
    Kołodziej M; Majkowski A; Tarnowski P; Rak RJ; Gebert D; Sawicki D
    J Healthc Eng; 2019; 2019():9497151. PubMed ID: 30944719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving compliance in remote healthcare systems through smartphone battery optimization.
    Alshurafa N; Eastwood JA; Nyamathi S; Liu JJ; Xu W; Ghasemzadeh H; Pourhomayoun M; Sarrafzadeh M
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):57-63. PubMed ID: 24951710
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.