These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27249827)

  • 1. JPL Ultrastable Trapped Ion Atomic Frequency Standards.
    Burt EA; Yi L; Tucker B; Hamell R; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):1013-21. PubMed ID: 27249827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mercury Ion Clock for a NASA Technology Demonstration Mission.
    Tjoelker RL; Prestage JD; Burt EA; Chen P; Chong YJ; Chung SK; Diener W; Ely T; Enzer DG; Mojaradi H; Okino C; Pauken M; Robison D; Swenson BL; Tucker B; Wang R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):1034-43. PubMed ID: 27019481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A compensated multi-pole linear ion trap mercury frequency standard for ultra-stable timekeeping.
    Burt EA; Diener WA; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Dec; 55(12):2586-95. PubMed ID: 19126484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of a trapped-ion atomic clock in space.
    Burt EA; Prestage JD; Tjoelker RL; Enzer DG; Kuang D; Murphy DW; Robison DE; Seubert JM; Wang RT; Ely TA
    Nature; 2021 Jul; 595(7865):43-47. PubMed ID: 34194022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using the Deep Space Atomic Clock for Navigation and Science.
    Ely TA; Burt EA; Prestage JD; Seubert JM; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):950-961. PubMed ID: 29856712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test and Analysis of Timekeeping Performance of Atomic Clock.
    Li S; Li C; Wu J; Cui H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drifts and Environmental Disturbances in Atomic Clock Subsystems: Quantifying Local Oscillator, Control Loop, and Ion Resonance Interactions.
    Enzer DG; Diener WA; Murphy DW; Rao SR; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):623-633. PubMed ID: 28029621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Micro mercury trapped ion clock prototypes with 10[Formula: see text] frequency stability in 1-liter packages.
    Hoang TM; Chung SK; Le T; Park S; Park SJ; Eden JG; Holland C; Wang H; Momeni O; Bradley R; Crane S; Prestage JD; Yu N
    Sci Rep; 2023 Jun; 13(1):10629. PubMed ID: 37391450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastable laser with average fractional frequency drift rate below 5 × 10⁻¹⁹/s.
    Hagemann C; Grebing C; Lisdat C; Falke S; Legero T; Sterr U; Riehle F; Martin MJ; Ye J
    Opt Lett; 2014 Sep; 39(17):5102-5. PubMed ID: 25166084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A highly miniaturized vacuum package for a trapped ion atomic clock.
    Schwindt PD; Jau YY; Partner H; Casias A; Wagner AR; Moorman M; Manginell RP; Kellogg JR; Prestage JD
    Rev Sci Instrum; 2016 May; 87(5):053112. PubMed ID: 27250397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mirror Clock: A Strategy for Identifying Atomic Clock Frequency Jumps.
    Liu M; Chen Y; Xu Q; Wang Y; Gao Y; Zhang A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-orbit operation of an atomic clock based on laser-cooled
    Liu L; Lü DS; Chen WB; Li T; Qu QZ; Wang B; Li L; Ren W; Dong ZR; Zhao JB; Xia WB; Zhao X; Ji JW; Ye MF; Sun YG; Yao YY; Song D; Liang ZG; Hu SJ; Yu DH; Hou X; Shi W; Zang HG; Xiang JF; Peng XK; Wang YZ
    Nat Commun; 2018 Jul; 9(1):2760. PubMed ID: 30042419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic clocks for geodesy.
    Mehlstäubler TE; Grosche G; Lisdat C; Schmidt PO; Denker H
    Rep Prog Phys; 2018 Jun; 81(6):064401. PubMed ID: 29667603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic clock performance enabling geodesy below the centimetre level.
    McGrew WF; Zhang X; Fasano RJ; Schäffer SA; Beloy K; Nicolodi D; Brown RC; Hinkley N; Milani G; Schioppo M; Yoon TH; Ludlow AD
    Nature; 2018 Dec; 564(7734):87-90. PubMed ID: 30487601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrastable Free-Space Laser Links for a Global Network of Optical Atomic Clocks.
    Gozzard DR; Howard LA; Dix-Matthews BP; Karpathakis SFE; Gravestock CT; Schediwy SW
    Phys Rev Lett; 2022 Jan; 128(2):020801. PubMed ID: 35089751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct frequency comb optical frequency standard based on two-photon transitions of thermal atoms.
    Zhang SY; Wu JT; Zhang YL; Leng JX; Yang WP; Zhang ZG; Zhao JY
    Sci Rep; 2015 Oct; 5():15114. PubMed ID: 26459877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new trapped ion atomic clock based on 201Hg+.
    Burt EA; Taghavi-Larigani S; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):629-35. PubMed ID: 20211781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Absolute and relative stability of an optical frequency reference based on spectral hole burning in Eu3+:Y2SiO5.
    Leibrandt DR; Thorpe MJ; Chou CW; Fortier TM; Diddams SA; Rosenband T
    Phys Rev Lett; 2013 Dec; 111(23):237402. PubMed ID: 24476301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.