These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27250143)

  • 1. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.
    Maraghechi B; Hasani MH; Kolios MC; Tavakkoli J
    J Acoust Soc Am; 2016 May; 139(5):2475. PubMed ID: 27250143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound beam propagation in ex vivo tissue and tissue-mimicking phantoms.
    Maraghechi B; Kolios MC; Tavakkoli J
    Int J Hyperthermia; 2015; 31(6):666-73. PubMed ID: 26134741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive calibrated tissue temperature estimation using backscattered energy of acoustic harmonics.
    Shaswary E; Assi H; Yang C; Kumaradas JC; Kolios MC; Peyman G; Tavakkoli J
    Ultrasonics; 2021 Jul; 114():106406. PubMed ID: 33691235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating acoustic peak pressure generated by ultrasound transducers from harmonic distortion level measurement.
    Matte GM; Borsboom JM; van Neer P; de Jong N
    Ultrasound Med Biol; 2008 Sep; 34(9):1528-32. PubMed ID: 18450363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of nonlinear propagation of biomedical ultrasound using pzflex and the Khokhlov-Zabolotskaya-Kuznetsov Texas code.
    Qiao S; Jackson E; Coussios CC; Cleveland RO
    J Acoust Soc Am; 2016 Sep; 140(3):2039. PubMed ID: 27914432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "HIFU Beam:" A Simulator for Predicting Axially Symmetric Nonlinear Acoustic Fields Generated by Focused Transducers in a Layered Medium.
    Yuldashev PV; Karzova MM; Kreider W; Rosnitskiy PB; Sapozhnikov OA; Khokhlova VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Sep; 68(9):2837-2852. PubMed ID: 33877971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
    Wear KA; Howard SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.
    Humphrey VF
    Ultrasonics; 2000 Mar; 38(1-8):267-72. PubMed ID: 10829672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-demodulation of high-frequency ultrasound.
    Vos HJ; Goertz DE; de Jong N
    J Acoust Soc Am; 2010 Mar; 127(3):1208-17. PubMed ID: 20329819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Possible temperature effects computed for acoustic microscopy used for living cells.
    Kujawska T; Wójcik J; Filipczyński L
    Ultrasound Med Biol; 2004 Jan; 30(1):93-101. PubMed ID: 14962613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the propagation of nonlinear three-dimensional acoustic beams in inhomogeneous media.
    Jing Y; Cleveland RO
    J Acoust Soc Am; 2007 Sep; 122(3):1352. PubMed ID: 17927398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.
    Divall SA; Humphrey VF
    Ultrasonics; 2000 Mar; 38(1-8):273-7. PubMed ID: 10829673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonlinear derating of high-intensity focused ultrasound beams using Gaussian modal sums.
    Dibaji SA; Banerjee RK; Soneson JE; Myers MR
    J Acoust Soc Am; 2013 Nov; 134(5):3435-45. PubMed ID: 24180754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting nonlinear wave propagation to improve the precision of ultrasonic flow meters.
    Massaad J; van Neer PLMJ; van Willigen DM; de Jong N; Pertijs MAP; Verweij MD
    Ultrasonics; 2021 Sep; 116():106476. PubMed ID: 34098419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time domain simulation of nonlinear acoustic beams generated by rectangular pistons with application to harmonic imaging.
    Yang X; Cleveland RO
    J Acoust Soc Am; 2005 Jan; 117(1):113-23. PubMed ID: 15704404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental investigation of material nonlinearity using the Rayleigh surface waves excited and detected by angle beam wedge transducers.
    Zhang S; Li X; Jeong H; Hu H
    Ultrasonics; 2018 Sep; 89():118-125. PubMed ID: 29778060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency harmonic imaging of the eye.
    Silverman RH; Coleman DJ; Ketterling JA; Lizzi FL
    Proc SPIE Int Soc Opt Eng; 2005; 5750():16-25. PubMed ID: 17102825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical solution of the nonlinear equations of acoustic in the form of Gaussian beam.
    Wójcik J
    Ultrasonics; 2022 May; 122():106687. PubMed ID: 35121227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear acoustic properties of ex vivo bovine liver and the effects of temperature and denaturation.
    Jackson EJ; Coussios CC; Cleveland RO
    Phys Med Biol; 2014 Jun; 59(12):3223-38. PubMed ID: 24862475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.