BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 27250152)

  • 1. Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks?
    Lee WJ; Moss CF
    J Acoust Soc Am; 2016 May; 139(5):2579. PubMed ID: 27250152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wingtip folds and ripples on saturniid moths create decoy echoes against bat biosonar.
    Neil TR; Kennedy EE; Harris BJ; Holderied MW
    Curr Biol; 2021 Nov; 31(21):4824-4830.e3. PubMed ID: 34506731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The evolution of anti-bat sensory illusions in moths.
    Rubin JJ; Hamilton CA; McClure CJW; Chadwell BA; Kawahara AY; Barber JR
    Sci Adv; 2018 Jul; 4(7):eaar7428. PubMed ID: 29978042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Moth tails divert bat attack: evolution of acoustic deflection.
    Barber JR; Leavell BC; Keener AL; Breinholt JW; Chadwell BA; McClure CJ; Hill GM; Kawahara AY
    Proc Natl Acad Sci U S A; 2015 Mar; 112(9):2812-6. PubMed ID: 25730869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tiger moth jams bat sonar.
    Corcoran AJ; Barber JR; Conner WE
    Science; 2009 Jul; 325(5938):325-7. PubMed ID: 19608920
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do tiger moths jam bat sonar?
    Corcoran AJ; Barber JR; Hristov NI; Conner WE
    J Exp Biol; 2011 Jul; 214(Pt 14):2416-25. PubMed ID: 21697434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey.
    Mantani S; Hiryu S; Fujioka E; Matsuta N; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):741-51. PubMed ID: 22777677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Echolocating bats accumulate information from acoustic snapshots to predict auditory object motion.
    Salles A; Diebold CA; Moss CF
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):29229-29238. PubMed ID: 33139550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Echolocation of insects using intermittent frequency-modulated sounds.
    Matsuo I; Takanashi T
    J Acoust Soc Am; 2015 Sep; 138(3):EL276-9. PubMed ID: 26428826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of bat echolocation call duration and timing on auditory encoding of predator distance in noctuoid moths.
    Gordon SD; Ter Hofstede HM
    J Exp Biol; 2018 Mar; 221(Pt 6):. PubMed ID: 29567831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Auditory scene analysis by echolocation in bats.
    Moss CF; Surlykke A
    J Acoust Soc Am; 2001 Oct; 110(4):2207-26. PubMed ID: 11681397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic camouflage increases with body size and changes with bat echolocation frequency range in a community of nocturnally active Lepidoptera.
    Simon R; Dreissen A; Leroy H; Berg MP; Halfwerk W
    J Anim Ecol; 2023 Dec; 92(12):2363-2372. PubMed ID: 37882060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High duty cycle moth sounds jam bat echolocation: bats counter with compensatory changes in buzz duration.
    Fernández Y; Dowdy NJ; Conner WE
    J Exp Biol; 2022 Sep; 225(18):. PubMed ID: 36111562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The adaptive function of tiger moth clicks against echolocating bats: an experimental and synthetic approach.
    Ratcliffe JM; Fullard JH
    J Exp Biol; 2005 Dec; 208(Pt 24):4689-98. PubMed ID: 16326950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High duty cycle echolocation and prey detection by bats.
    Lazure L; Fenton MB
    J Exp Biol; 2011 Apr; 214(Pt 7):1131-7. PubMed ID: 21389198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convergent evolution of anti-bat sounds.
    Corcoran AJ; Hristov NI
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep; 200(9):811-21. PubMed ID: 24980483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High duty cycle pulses suppress orientation flights of crambid moths.
    Nakano R; Ihara F; Mishiro K; Toyama M; Toda S
    J Insect Physiol; 2015 Dec; 83():15-21. PubMed ID: 26549128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hearing diversity in moths confronting a neotropical bat assemblage.
    Cobo-Cuan A; Kössl M; Mora EC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Sep; 203(9):707-715. PubMed ID: 28421281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sonar jamming in the field: effectiveness and behavior of a unique prey defense.
    Corcoran AJ; Conner WE
    J Exp Biol; 2012 Dec; 215(Pt 24):4278-87. PubMed ID: 23175526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tempo and mode of antibat ultrasound production and sonar jamming in the diverse hawkmoth radiation.
    Kawahara AY; Barber JR
    Proc Natl Acad Sci U S A; 2015 May; 112(20):6407-12. PubMed ID: 25941377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.