These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27250156)

  • 1. Experimental validation of a nonlinear derating technique based upon Gaussian-modal representation of focused ultrasound beams.
    Dibaji SA; Banerjee RK; Liu Y; Soneson JE; Myers MR
    J Acoust Soc Am; 2016 May; 139(5):2624. PubMed ID: 27250156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear derating of high-intensity focused ultrasound beams using Gaussian modal sums.
    Dibaji SA; Banerjee RK; Soneson JE; Myers MR
    J Acoust Soc Am; 2013 Nov; 134(5):3435-45. PubMed ID: 24180754
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental evaluation of indicators of nonlinearity for use in ultrasound transducer characterizations.
    Bigelow TA; O'Brien WD
    Ultrasound Med Biol; 2002; 28(11-12):1509-20. PubMed ID: 12498947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
    Rosnitskiy PB; Yuldashev PV; Sapozhnikov OA; Maxwell AD; Kreider W; Bailey MR; Khokhlova VA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):374-390. PubMed ID: 27775904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear focal shift beyond the geometrical focus in moderately focused acoustic beams.
    Camarena F; Adrián-Martínez S; Jiménez N; Sánchez-Morcillo V
    J Acoust Soc Am; 2013 Aug; 134(2):1463-72. PubMed ID: 23927186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach.
    Canney MS; Bailey MR; Crum LA; Khokhlova VA; Sapozhnikov OA
    J Acoust Soc Am; 2008 Oct; 124(4):2406-20. PubMed ID: 19062878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of nonlinear ultrasound propagation on high intensity brain therapy.
    Pinton G; Aubry JF; Fink M; Tanter M
    Med Phys; 2011 Mar; 38(3):1207-16. PubMed ID: 21520833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A DERATING METHOD FOR THERAPEUTIC APPLICATIONS OF HIGH INTENSITY FOCUSED ULTRASOUND.
    Bessonova OV; Khokhlova VA; Canney MS; Bailey MR; Crum LA
    Acoust Phys; 2010 Jan; 56(3):354-363. PubMed ID: 20582159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear propagation in ultrasonic fields: measurements, modelling and harmonic imaging.
    Humphrey VF
    Ultrasonics; 2000 Mar; 38(1-8):267-72. PubMed ID: 10829672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational study on the propagation of strongly focused nonlinear ultrasound in tissue with rib-like structures.
    Lin J; Liu X; Gong X; Ping Z; Wu J
    J Acoust Soc Am; 2013 Aug; 134(2):1702-14. PubMed ID: 23927211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An exposimetry system using tissue-mimicking liquid.
    Stiles TA; Madsen EL; Frank GR
    Ultrasound Med Biol; 2008 Jan; 34(1):123-36. PubMed ID: 17720296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative estimation of ultrasound beam intensities using infrared thermography-Experimental validation.
    Giridhar D; Robinson RA; Liu Y; Sliwa J; Zderic V; Myers MR
    J Acoust Soc Am; 2012 Jun; 131(6):4283-91. PubMed ID: 22712903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear ultrasound propagation through layered liquid and tissue-equivalent media: computational and experimental results at high frequency.
    Williams R; Cherin E; Lam TY; Tavakkoli J; Zemp RJ; Foster FS
    Phys Med Biol; 2006 Nov; 51(22):5809-24. PubMed ID: 17068366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shock formation and nonlinear saturation effects in the ultrasound field of a diagnostic curvilinear probe.
    Karzova MM; Yuldashev PV; Sapozhnikov OA; Khokhlova VA; Cunitz BW; Kreider W; Bailey MR
    J Acoust Soc Am; 2017 Apr; 141(4):2327. PubMed ID: 28464662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear change of on-axis pressure and intensity maxima positions and its relation with the linear focal shift effect.
    Makov YN; Sánchez-Morcillo VJ; Camarena F; Espinosa V
    Ultrasonics; 2008 Dec; 48(8):678-86. PubMed ID: 18442837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative non-linear ultrasonic imaging of targets with significant acoustic impedance contrast--an experimental study.
    Guillermin R; Lasaygues P; Rabau G; Lefebvre JP
    J Acoust Soc Am; 2013 Aug; 134(2):1001-10. PubMed ID: 23927099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature modes for nonlinear Gaussian beams.
    Myers MR; Soneson JE
    J Acoust Soc Am; 2009 Jul; 126(1):425-33. PubMed ID: 19603899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focused ultrasound transducer spatial peak intensity estimation: a comparison of methods.
    Civale J; Rivens I; Shaw A; Ter Haar G
    Phys Med Biol; 2018 Mar; 63(5):055015. PubMed ID: 29437152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic measurements in a tissue mimicking liquid.
    Macdonald MC; Madsen EL
    J Ultrasound Med; 1999 Jan; 18(1):55-62. PubMed ID: 9952080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction for Spatial Averaging Artifacts in Hydrophone Measurements of High-Intensity Therapeutic Ultrasound: An Inverse Filter Approach.
    Wear KA; Howard SM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Sep; 66(9):1453-1464. PubMed ID: 31247548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.