BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27250177)

  • 1. Influence of lips on the production of vowels based on finite element simulations and experiments.
    Arnela M; Blandin R; Dabbaghchian S; Guasch O; Alías F; Pelorson X; Van Hirtum A; Engwall O
    J Acoust Soc Am; 2016 May; 139(5):2852. PubMed ID: 27250177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of head geometry simplifications on acoustic radiation of vowel sounds based on time-domain finite-element simulations.
    Arnela M; Guasch O; Alías F
    J Acoust Soc Am; 2013 Oct; 134(4):2946-54. PubMed ID: 24116430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human vocal tract resonances and the corresponding mode shapes investigated by three-dimensional finite-element modelling based on CT measurement.
    Vampola T; Horáček J; Laukkanen AM; Švec JG
    Logoped Phoniatr Vocol; 2015 Apr; 40(1):14-23. PubMed ID: 23517635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-dimensional vocal tracts with three-dimensional behavior in the numerical generation of vowels.
    Arnela M; Guasch O
    J Acoust Soc Am; 2014 Jan; 135(1):369-79. PubMed ID: 24437777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of vocal tract geometry simplifications on the numerical simulation of vowel sounds.
    Arnela M; Dabbaghchian S; Blandin R; Guasch O; Engwall O; Van Hirtum A; Pelorson X
    J Acoust Soc Am; 2016 Sep; 140(3):1707. PubMed ID: 27914393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulation of vowel-vowel utterances using a 3D biomechanical-acoustic model.
    Dabbaghchian S; Arnela M; Engwall O; Guasch O
    Int J Numer Method Biomed Eng; 2021 Jan; 37(1):e3407. PubMed ID: 33070445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to precisely measure the volume velocity transfer function of physical vocal tract models by external excitation.
    Fleischer M; Mainka A; Kürbis S; Birkholz P
    PLoS One; 2018; 13(3):e0193708. PubMed ID: 29543829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic analysis of the vocal tract during vowel production by finite-difference time-domain method.
    Takemoto H; Mokhtari P; Kitamura T
    J Acoust Soc Am; 2010 Dec; 128(6):3724-38. PubMed ID: 21218904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Vocal Tract Organ: A New Musical Instrument Using 3-D Printed Vocal Tracts.
    Howard DM
    J Voice; 2018 Nov; 32(6):660-667. PubMed ID: 29111337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formant frequencies and bandwidths of the vocal tract transfer function are affected by the mechanical impedance of the vocal tract wall.
    Fleischer M; Pinkert S; Mattheus W; Mainka A; Mürbe D
    Biomech Model Mechanobiol; 2015 Aug; 14(4):719-33. PubMed ID: 25416844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A hybrid approach to the computational aeroacoustics of human voice production.
    Šidlof P; Zörner S; Hüppe A
    Biomech Model Mechanobiol; 2015 Jun; 14(3):473-88. PubMed ID: 25288479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finite element computation of elliptical vocal tract impedances using the two-microphone transfer function method.
    Arnela M; Guasch O
    J Acoust Soc Am; 2013 Jun; 133(6):4197-209. PubMed ID: 23742371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Measured and Simulated Supraglottal Acoustic Waves.
    Fraile R; Evdokimova VV; Evgrafova KV; Godino-Llorente JI; Skrelin PA
    J Voice; 2016 Sep; 30(5):518-28. PubMed ID: 26377510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A methodological and preliminary study on the acoustic effect of a trumpet player's vocal tract.
    Kaburagi T; Yamada N; Fukui T; Minamiya E
    J Acoust Soc Am; 2011 Jul; 130(1):536-45. PubMed ID: 21786919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal tract changes caused by phonation into a tube: a case study using computer tomography and finite-element modeling.
    Vampola T; Laukkanen AM; Horácek J; Svec JG
    J Acoust Soc Am; 2011 Jan; 129(1):310-5. PubMed ID: 21303012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vocal Tract Resonance Detection at Low Frequencies: Improving Physical and Transducer Configurations.
    Thilakan J; B T B; P M S; Chen JM
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of aerodynamic interaction between vocal folds and vocal tract during production of a vowel-voiceless plosive-vowel sequence.
    Delebecque L; Pelorson X; Beautemps D
    J Acoust Soc Am; 2016 Jan; 139(1):350-60. PubMed ID: 26827030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printable 3D vocal tract shapes from MRI data and their acoustic and aerodynamic properties.
    Birkholz P; Kürbis S; Stone S; Häsner P; Blandin R; Fleischer M
    Sci Data; 2020 Aug; 7(1):255. PubMed ID: 32759947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perturbation Measurements on the Degree of Naturalness of Synthesized Vowels.
    Yamasaki R; Montagnoli A; Murano EZ; Gebrim E; Hachiya A; Lopes da Silva JV; Behlau M; Tsuji D
    J Voice; 2017 May; 31(3):389.e1-389.e8. PubMed ID: 27777057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Articulation and vocal tract acoustics at soprano subject's high fundamental frequencies.
    Echternach M; Birkholz P; Traser L; Flügge TV; Kamberger R; Burk F; Burdumy M; Richter B
    J Acoust Soc Am; 2015 May; 137(5):2586-95. PubMed ID: 25994691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.