BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27250177)

  • 21. An anatomically based, time-domain acoustic model of the subglottal system for speech production.
    Ho JC; Zañartu M; Wodicka GR
    J Acoust Soc Am; 2011 Mar; 129(3):1531-47. PubMed ID: 21428517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low frequency acoustic resonances in urban courtyards.
    Molerón M; Félix S; Pagneux V; Richoux O
    J Acoust Soc Am; 2014 Jan; 135(1):74-82. PubMed ID: 24437747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical simulation of self-sustained oscillation of a voice-producing element based on Navier-Stokes equations and the finite element method.
    de Vries MP; Hamburg MC; Schutte HK; Verkerke GJ; Veldman AE
    J Acoust Soc Am; 2003 Apr; 113(4 Pt 1):2077-83. PubMed ID: 12703718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Compensation for a lip-tube perturbation in 4-year-olds: Articulatory, acoustic, and perceptual data analyzed in comparison with adults.
    Ménard L; Perrier P; Aubin J
    J Acoust Soc Am; 2016 May; 139(5):2514. PubMed ID: 27250147
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Frequencies, bandwidths and magnitudes of vocal tract and surrounding tissue resonances, measured through the lips during phonation.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2016 May; 139(5):2924. PubMed ID: 27250184
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acoustics: the vocal tract and the sound of a didgeridoo.
    Tarnopolsky A; Fletcher N; Hollenberg L; Lange B; Smith J; Wolfe J
    Nature; 2005 Jul; 436(7047):39. PubMed ID: 16001056
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Restoring speech following total removal of the larynx by a learned transformation from sensor data to acoustics.
    Gilbert JM; Gonzalez JA; Cheah LA; Ell SR; Green P; Moore RK; Holdsworth E
    J Acoust Soc Am; 2017 Mar; 141(3):EL307. PubMed ID: 28372104
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vocal tract area functions and formant frequencies in opera tenors' modal and falsetto registers.
    Echternach M; Sundberg J; Baumann T; Markl M; Richter B
    J Acoust Soc Am; 2011 Jun; 129(6):3955-63. PubMed ID: 21682417
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of nasal cavities on voice quality: Computer simulations and experiments.
    Vampola T; Horáček J; Radolf V; Švec JG; Laukkanen AM
    J Acoust Soc Am; 2020 Nov; 148(5):3218. PubMed ID: 33261400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formant frequency estimation of high-pitched vowels using weighted linear prediction.
    Alku P; Pohjalainen J; Vainio M; Laukkanen AM; Story BH
    J Acoust Soc Am; 2013 Aug; 134(2):1295-313. PubMed ID: 23927127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three speech sounds, one motor action: evidence for speech-motor disparity from English flap production.
    Derrick D; Stavness I; Gick B
    J Acoust Soc Am; 2015 Mar; 137(3):1493-502. PubMed ID: 25786960
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Morphologic differences in the vocal tract resonance cavities of voice professionals: an MRI-based study.
    Rua Ventura SM; Freitas DR; Ramos IM; Tavares JM
    J Voice; 2013 Mar; 27(2):132-40. PubMed ID: 23406840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acoustic comparison of vowel sounds among adult females.
    Franca MC
    J Voice; 2012 Sep; 26(5):671.e9-17. PubMed ID: 22285451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vowel formants from the wave equation.
    Hannukainen A; Lukkari T; Malinen J; Palo P
    J Acoust Soc Am; 2007 Jul; 122(1):EL1-7. PubMed ID: 17614371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A coupled modal-finite element method for the wave propagation modeling in irregular open waveguides.
    Pelat A; Felix S; Pagneux V
    J Acoust Soc Am; 2011 Mar; 129(3):1240-9. PubMed ID: 21428487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Treatment for Vocal Polyps: Lips and Tongue Trill.
    de Vasconcelos D; Gomes AO; de Araújo CM
    J Voice; 2017 Mar; 31(2):252.e27-252.e36. PubMed ID: 27522942
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wave separation in the trumpet under playing conditions and comparison with time domain finite difference simulation.
    Kemp JA; Bilbao S; McMaster J; Smith RA
    J Acoust Soc Am; 2013 Aug; 134(2):1395-406. PubMed ID: 23927135
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
    Bin J; Yousuff Hussaini M; Lee S
    J Acoust Soc Am; 2009 Feb; 125(2):664-75. PubMed ID: 19206844
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shaping by stiffening: a modeling study for lips.
    Nazari MA; Perrier P; Chabanas M; Payan Y
    Motor Control; 2011 Jan; 15(1):141-68. PubMed ID: 21339518
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.