BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27250184)

  • 41. High-speed registration of phonation-related glottal area variation during artificial lengthening of the vocal tract.
    Laukkanen AM; Pulakka H; Alku P; Vilkman E; Hertegård S; Lindestad PA; Larsson H; Granqvist S
    Logoped Phoniatr Vocol; 2007; 32(4):157-64. PubMed ID: 17917980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Responses of Middle-Frequency Modulations in Vocal Fundamental Frequency to Different Vocal Intensities and Auditory Feedback.
    Lee SH; Fang TJ; Yu JF; Lee GS
    J Voice; 2017 Sep; 31(5):536-544. PubMed ID: 28268129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of resonance tubes on glottal contact quotient with and without task instruction: a comparison of trained and untrained voices.
    Gaskill CS; Quinney DM
    J Voice; 2012 May; 26(3):e79-93. PubMed ID: 21550779
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vocal tract resonances in singing: Strategies used by sopranos, altos, tenors, and baritones.
    Henrich N; Smith J; Wolfe J
    J Acoust Soc Am; 2011 Feb; 129(2):1024-35. PubMed ID: 21361458
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of vocal tract formants in singing and nonperiodic phonation.
    Miller DG; Sulter AM; Schutte HK; Wolf RF
    J Voice; 1997 Mar; 11(1):1-11. PubMed ID: 9075171
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Artificially lengthened and constricted vocal tract in vocal training methods.
    Bele IV
    Logoped Phoniatr Vocol; 2005; 30(1):34-40. PubMed ID: 16040438
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical measurement of mucosal wave velocity using simultaneous photoglottography and laryngostroboscopy.
    Hanson DG; Jiang J; D'Agostino M; Herzon G
    Ann Otol Rhinol Laryngol; 1995 May; 104(5):340-9. PubMed ID: 7747903
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Determination of glottal open regions by exploiting changes in the vocal tract system characteristics.
    Prasad RS; Yegnanarayana B
    J Acoust Soc Am; 2016 Jul; 140(1):666. PubMed ID: 27475188
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Weight-bearing MR imaging as an option in the study of gravitational effects on the vocal tract of untrained subjects in singing phonation.
    Traser L; Burdumy M; Richter B; Vicari M; Echternach M
    PLoS One; 2014; 9(11):e112405. PubMed ID: 25379885
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms.
    Zhao W; Zhang C; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2134-46. PubMed ID: 12430825
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Vibratory Dynamics of Four Types of Excised Larynx Phonations.
    Li L; Zhang Y; Calawerts W; Jiang JJ
    J Voice; 2016 Nov; 30(6):649-655. PubMed ID: 26476848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A theoretical study of F0-F1 interaction with application to resonant speaking and singing voice.
    Titze IR
    J Voice; 2004 Sep; 18(3):292-8. PubMed ID: 15331101
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lexical frequency and voice assimilation.
    Ernestus M; Lahey M; Verhees F; Baayen RH
    J Acoust Soc Am; 2006 Aug; 120(2):1040-51. PubMed ID: 16938990
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A methodological and preliminary study on the acoustic effect of a trumpet player's vocal tract.
    Kaburagi T; Yamada N; Fukui T; Minamiya E
    J Acoust Soc Am; 2011 Jul; 130(1):536-45. PubMed ID: 21786919
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact Stress in Water Resistance Voice Therapy: A Physical Modeling Study.
    Horáček J; Radolf V; Laukkanen AM
    J Voice; 2019 Jul; 33(4):490-496. PubMed ID: 29884510
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spectrographic Acoustic Vocal Characteristics of Elderly Women Engaged in Aerobics.
    Colman Machado de Machado F; Lessa MM; Cielo CA; Barbosa LH
    J Voice; 2016 Sep; 30(5):579-86. PubMed ID: 26474716
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The "Overdrive" Mode in the "Complete Vocal Technique": A Preliminary Study.
    Sundberg J; Bitelli M; Holmberg A; Laaksonen V
    J Voice; 2017 Sep; 31(5):528-535. PubMed ID: 28347616
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Habitual use of vocal fry in young adult female speakers.
    Wolk L; Abdelli-Beruh NB; Slavin D
    J Voice; 2012 May; 26(3):e111-6. PubMed ID: 21917418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experimental investigation of the influence of a posterior gap on glottal flow and sound.
    Park JB; Mongeau L
    J Acoust Soc Am; 2008 Aug; 124(2):1171-9. PubMed ID: 18681605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.